Ion mobility in Xe-CO2 mixtures: recent results

*Laboratório de Instrumentação e Física Experimental de Partículas (LIP-Coimbra)
Physics Department
University of Coimbra
Coimbra, Portugal
E-mail: jose.perdigoto@coimbra.lip.pt
Chronogram

Feb | Mar | April | May | June

Xe-C2H6 mixture 2/2/17 8/3/17

Ar-N2 mixture 16/3/17 30/4/17

Xe-CH4 mixture 1/5/17 15/6/17

Design of a chamber to measure mobility of negative ions within a Collaboration with JINR 15/4/17
1 Basic Concepts

2 Experimental Setup and Working Principle

3 Ion Identification Process

4 Experimental results in:
 a Xe, CO₂
 b Xe-CO₂
Let us consider a group of ions moving in a gaseous medium under the influence of a uniform electric field...

Drift velocity

\[v_d = KE \]

- \(E \)- Electric Field
- \(K \)- Ion Mobility

Reduced Mobility

\[K_0 = \frac{KN}{N_0} \]

- \(N \)- Gas number density
- \(N_0 \)- Loschmidt Number

Langevin Limit

\[K_0 = 13.88 \left(\frac{1}{\alpha \mu} \right)^{\frac{1}{2}} \]

- \(\mu \)- reduced mass
- \(\alpha \)- neutral polarizability

Blanc’s Law

\[\frac{1}{K_{0\text{mix}}} = \frac{f_1}{K_{0g1}} + \frac{f_2}{K_{0g2}} \]

- \(f_1, f_2 \)- molar fraction of gas 1, 2
- \(K_{0g1}, K_{0g2} \)- ion mobility in the gas 1 and 2
Experimental Setup and Working Principle

- Xenon UV flash lamp: 10Hz, <500ns
- G1
- G2= Frisch Grid

Charge Pre-amplifier

Digital Oscilloscope

GEM

CsI

(Neves, Conde and Távora, 2007)
Experimental Setup and Working Principle

- Subtract the background to the signal
- Identify possible peaks
- Fit Gaussian curves to the peaks obtained

Peaks centroids

\[v_d = \frac{x_{\text{drift}}}{t_{\text{drift}}} \]
\[K = \frac{v_d}{E} \]

\[K_{01} = 1.57 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \quad (\text{Ar}^+) \]
\[K_{02} = 1.92 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \quad (\text{Ar}_2^+) \]
Ion Identification Process

Identification of candidate ions
- GEM Voltage
- Possible Reactions
 - Cross Section
 - Reaction Rates

Selection of Candidate ions

Calculation of expected mobility
- Langevin Limit (formula)
- Blanc’s law (mixtures)

Comparison with experimental results

Theoretical Values = Experimental Values

Match?
Ion Mobility Measurement at LIP Coimbra

Ionization

\[\text{Xe} + e^- \rightarrow \text{Xe}^+ + 2e^- \]

Secondary Reactions

\[\text{Xe}^+ + 2\text{Xe} \rightarrow \text{Xe}_2^+ + \text{Xe} \]
\[\text{Xe}^+ + \text{Xe} \rightarrow \text{Xe} + \text{Xe}^+ \]

Above 12.1 eV

Experimental Results: Xe

\[K_{01} = 0.58 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} (\text{Xe}^+) \]
\[K_{02} = 0.64 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} (\text{Xe}_2^+) \]

P.N.B. Neves, 2011, IEEE

E/N=20 Td
7,992 Torr
\[V_{\text{GEM}} = 16 \text{ V} \]
Experimental Results: CO₂

Ionization

\[\text{CO}_2 + e^- \rightarrow \text{CO}_2^+ + 2e^- \]
Above 13.8 eV

\[\text{CO}_2 + e^- \rightarrow \text{CO}_2^+ + 2e^- \]
\[\rightarrow \text{CO}^+ + \frac{1}{2}\text{O}_2 + 2e^- \]
\[\rightarrow \text{O}^+ + \text{CO} + 2e^- \]
Above 19.5 eV

Appearance Energies

- \(\text{CO}_2^+ \): 13.8 eV
- \(\text{CO}^+ \): 19.5 eV
- \(\text{O}^+ \): 19.1 eV

Secondary Reactions

- \(\text{CO}_2^+ + \text{CO}_2 \rightarrow \text{CO}_2 + \text{CO}_2^+ \)
- \(\text{CO}^+ + \text{CO}_2 \rightarrow \text{CO}_2^+ + \text{CO} \)
- \(\text{O}^+ + \text{CO}_2 \rightarrow \text{O}_2^+ + \text{CO} \)

P.M.C.C. Encarnação, 2015, JINST
Experimental Results: CO$_2$

$K_{01} \sim 1.17 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

CO$_2^+$

Good agreement with earlier reported works:

1. W. T. Huntress et al.: 1.23 cm2V$^{-1}$s$^{-1}$
2. G. Schultz et al.: 1.09 cm2V$^{-1}$s$^{-1}$

Langevin Formula

1.82 cm2V$^{-1}$s$^{-1}$

\neq

Extrapolated Value
$(E/N \rightarrow 0)$

1.17 cm2V$^{-1}$s$^{-1}$

Charge Transfer Process

CO$_2^+$ + CO$_2$ \rightarrow CO$_2$ + CO$_2^+$

CO$_2^+$ + CO$_2$ + M \rightarrow CO$_2$.CO$_2^+$ + M

Graph:

- Experimental results
- G.schultz [CO2+]
- W. T. Huntress [CO2+]
- P.A. Coxon et al [CO2+(CO2)n]
Experimental Results: Xe-CO$_2$

- **15% Xe**
 - Xe$^+$

- **25% Xe**
 - Xe$^+/\text{Xe}_2^+$

- **50% Xe**
 - Xe$_2^+$

- **95% Xe**
 - Xe$_2^+$

Experimental Conditions:
- E/N = 15 Td
- P = 8 Torr
- VGEM = 25 V

Ion Mobility Measurement at LIP Coimbra
Experimental Results: Xe-CO$_2$

Direct Ionization

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Cross Section (20 eV)</th>
<th>Final Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ + e \rightarrow CO$_2^+$ + 2e</td>
<td>0.452</td>
<td>CO$_2^+$</td>
</tr>
<tr>
<td>Xe + e \rightarrow Xe$^+$ + 2e</td>
<td>2.43</td>
<td>Xe$^+$</td>
</tr>
</tbody>
</table>

Xe$^+$ predominant primary ion down to **15%** of Xe.

Secondary Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant cm3.s$^{-1}$ or cm6.s$^{-1}$</th>
<th>Final Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2^+$ + Xe \rightarrow CO$_2$ + Xe$^+$</td>
<td>6E-10</td>
<td>Xe$^+$</td>
</tr>
<tr>
<td>Xe$^+$ + Xe \rightarrow Xe + Xe$^+$</td>
<td>2.5E-10</td>
<td>Xe$^+$</td>
</tr>
<tr>
<td>Xe$^+$ + 2Xe \rightarrow Xe$_2^+$ + Xe</td>
<td>2E-31</td>
<td>Xe$_2^+$</td>
</tr>
<tr>
<td>CO$_2^+$ + CO$_2$ + M \rightarrow CO$_2$.CO$_2^+$ + M</td>
<td>2.1E-28</td>
<td>CO$_2$.CO$_2^+$</td>
</tr>
<tr>
<td>CO$_2^+$ + CO$_2$ \rightarrow CO$_2$ + CO$_2^+$</td>
<td>3.7E-10</td>
<td>CO$_2^+$</td>
</tr>
</tbody>
</table>

E/N = 20 Td

P = 8 Torr (95% Xe 5% CO$_2$)

VGEM = 25 V
Reactions Paths

\[K_{01} \sim 0.99 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \]

\[K_{01} \sim 0.93 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \]

\[K_{01} \sim 0.82 \text{ cm}^2\text{V}^{-1}\text{s}^{-1} \]
Experimental Results: Xe-CO₂

P = 8 Torr
V_GEM = 25V
E/N = 15 Td

Ion Mobility Measurement at LIP Coimbra

Experimental Results: Xe-CO₂

P = 8 Torr
V_GEM = 25V
E/N = 15 Td

Ion Mobility Measurement at LIP Coimbra

Experimental Results: Xe-CO₂

P = 8 Torr
V_GEM = 25V
E/N = 15 Td

Ion Mobility Measurement at LIP Coimbra
Present Status and Future Work

• Pursuit the investigation of the mobility of ions in different gas mixtures of practical use (if you have any suggestions feel free to contact us).
 • In the scope of the RD51 common project submitted with GSI (Germany), Uludag Univ. (Turkey) and VECC (India).

\(\text{Ne-N}_2 \) (Published)
\(\text{Ne-CO}_2-N_2 \) (Presented in IEEE NSS Conference 2016 - Strasbourg)
\(\text{Xe-CO}_2 \) (Finished – Paper Submitted to JINST)
\(\text{Xe-C}_2\text{H}_6 \) (Ongoing with Preliminary Results)
\(\text{Ar-N}_2 \)
\(\text{Ar-CF}_4 \) and \(\text{Ar-CF}_4\)-IsoButane

• Rate constant influence
• Study lighter ions (\(\text{H}_2 \))
• Water influence on the ion’s mobility
• (...)

• Optimization of the detector:
 • \textit{Variable Drift Distance}
 (Already designed ready to be implemented – done by P. Encarnação)
 • \textit{Measurement of the mobility of negative ions}
 (Just started the design of it within a Collaboration with JINR)
• A special thank to FCT-Fundação para a Ciência e Tecnologia for supporting this work through the National funds in the frame of the Project QREN n.4825, Rad for Life and to

• CERN/RD51 Collaboration – Common Projects - ‘Measurement and calculation of ion mobility of some gas mixtures of interest’. Participating institutions:

Thank you!
Mixing Langevin Limit with Blanc’s Law

Langevin Limit
To determine the mobility of an ion within a gas (not the parent).

\[K_p = 13.88 \left(\frac{1}{\alpha \mu} \right)^{\frac{1}{2}} \]

\(\mu \) – reduced mass
\(\alpha \) – neutral polarizability

Experimental Ion Mobility Values
Mobility of an ion within his parent gas (if known).

Theoretical Mobility Values

Blanc’s Law
Used to calculate the mobility of an ion in a gas mixture.

\[\frac{1}{K_{0\text{mix}}} = \frac{f_1}{K_{0g1}} + \frac{f_2}{K_{0g2}} \]

\(f_1, f_2 \) – molar fraction of gas 1 and 2

Mobility of an ion in a mixture
Candidate ions identification

GEM Voltage
- Maximum energy gained by electrons.
- Primary ions possible to be formed.

\[
\text{Rg (pure)} \\
\text{Rg} + \text{e} \rightarrow \text{Rg}^+ + 2\text{e}
\]

Possible Reactions
Ions formed through reactions of the primary ions with neutral atoms or molecules from the medium.

Select Most Probable Ions
Used to calculate the mobility of an ion in a gas mixture.

\[
\tau = \frac{1}{kN}
\]
- Identification the possible ions present.

Reaction Time
Used to calculate the variation of the concentration of a specific ion in a mixture.

\[
\frac{[\text{Rg}^+]}{[\text{Rg}^+]_0} = e^{-\frac{t}{\tau}} \\
\frac{[\text{X}^+]}{[\text{X}^+]_0} = 1 - \frac{[\text{Rg}^+]}{[\text{Rg}^+]_0}
\]
- Identification the possible ions present.

Universal decay law
Reactions Paths

\[\text{Ne}^+ + \text{N}_2 \rightarrow \text{N}_2^+ + \text{Ne} \]

\[\text{N}_2^+ + 2\text{N}_2 \rightarrow \text{N}_4^+ + \text{N}_2 \]

\[\text{N}_2^+ + 2\text{N}_2 \rightarrow \text{N}_4^+ + \text{N}_2 \]

\[\sim 35 \mu s \]
Ion mobility results comparison

![Graph showing ion mobility results comparison](image)