

Cryogenics storage and distribution

3rd HiLumi Industry Day 22 – 23 May 2017, Warrington, UK

Krzysztof Brodzinski – CERN on behalf of involved team

OUTLOOK

- Introduction
- LHC Cryogenics HiLumi upgrade
 - Distribution
 - Storage
- Concluding remarks

LHC cryogenics: 8 x 18 kW @ 4.5 K 1800 sc magnets 24 km & 20 kW @ 1.8 K 37 000 tons @ 1.9 K 135 tons of helium inventory

Introduction

≻ circumference → ~ 27 km,
≻ constructed at ~ 100 m underground,

Main HiLumi cryogenics upgrade will affect P1 and P5 for cooling of LHC matching sections and P4 for cooling of RF accelerating system.

- Compressor station
- 4.5 K refrigerator
- Interconnection box
- 1.8 K pumping unit (cold compressor)

HL-LHC systems are entering detailed integration phase

New baseline adopted to increase operating margins (Nb3Sn quadrupoles)

In-kind contribution and Collaborations for HW design and prototypes

Cold Powering System HTS links

- Design and construction of test station with 20 m long SC Link cryostat (CERN)
- Development of MgB₂ round wire (CERN with Columbus – Genova)
- Development of high-current (20 kA) MgB₂ cables (CERN)
- Launched procurement of 80 km of MgB₂ round wire which will be delivered as from April 2015

Excellent results obtained for elementary part of the cable

 $MgB_2 Wire$ $(\Phi = 0.9 mm)$

MgB₂ Cables

Global engineering (termination boxes, supporting) under study

Effect of the crab-cavities

To increase interaction overlap

 θ_{c}

Cryogenic distribution

HiLumi cryo updgrade will consist:

- 2 new cryoplants (~18 kW @ 4.5 K incl. ~3 kW @ 1.8 K) at P1 and P5 for high-luminosity insertions
- 1 new cryoplant (~4 kW @ 4.5 K) at P4 for SRF cryomodules. (Alternative under study: upgrade of 1 existing LHC cryoplant)
- Completely new helium cryogenic distribution between the production plants and client interfaces.

~ 100 m of warm distribution on the surface
~ 100 m of vertical cryogenic distribution
~ 400 m of cryo transfer line in the tunnel

New insertions at P1 & P5

HTS SC link Cryogenic distribution line Warm recovery line Warm piping LTS SC link Hi-Lumi LHC	New infrastructure	WCS Sta	orage DFBX DFBL
MB Q7DFBA QRL	D1 CP Q3 Q2 Q1	CCB Cavern	Q1 Q2
DFBL LHC SC link Mai MB Q7 DFBA QRL Q6 Q5 Q4D2	in tunnel D1 <mark>DFBX Q3 Q2 Q1</mark>	IP1 or IP5 ×	Q1 Q2 Q3

Nominal layout

- Cryogenics for new cryo-assemblies (Crab cavities (CC), insertion cryomagnets, DFBs, HTS links...)
- 1 warm compressor station (WCS) in noise insulated surface building
- 1 upper cold box (UCB) in surface building
- 1 cold quench buffer (QV) in surface
- 1 or 2 cold compressor boxes (CCB) in underground cavern
- 2 main cryogenic distribution lines
- 2 interconnection valve boxes with existing QRL (partial redundancy)

18kW@4.5K incl. 3kW@1.8K (integrated - mixed cycle)

And lines, vessels, ...

LHC cryo distribution in 2006 (photos)

Size of underground structures (e.g. US/UW cavern)

Size defined by integration and transport studies of similar equipment existing at CERN

Ventilation & smoke-

extraction ducts

Cooling & ventilation

New insertion at P4

- Cryogenics for 800 MHz SRF cryomodules and e-lenses
- 1 warm compressor station (WCS) in noise insulated surface building
- 1 lower cold box (LCB) in UX45 cavern
- 1 valve box in UX45 cavern
- 2 main cryogenic distribution lines
- 2 interconnection lines with existing QRL service modules (redundancy by sector cryoplants)

Storage system

2 x 6 GHe 250 m3 tanks

LN₂: 2017 – BA6, 20m³, PN6 LN₂: 2019/20 – P4, 20m³, PN6 (4 tanks)

GHe operational storage: 2024 – P1 and P5, 250m³, 25bar (4 tanks)

Open option (tbc) GHe quench storage with LN_2 screen: 2024 – P1 and P5, 50m³, 25bar (2 tanks)

HL-LHC Cryogenics Master Schedule

P4-RF:

=> specification work during 2017, for contracts by end'2017 (mid 2018) P1/P5:

=> 4-5 years to complete design, clarify interfaces and prepare for tendering

Concluding remarks

- The High-Luminosity LHC is a worldwide funded project corresponding to a 1.2 km new accelerator (advanced Nb3Sn, Crab cavities, HTS links) progressively switching to construction, with European institutes and industry heavily involved
- Series of qualification and testing of components foreseen in the coming years
- Now, civil works and global lay-out has been decided, with project fully approved. Precise evaluation of heat-loads and cryogenic architecture are being refined prior to future call for tenders.
- 4 contracts from cryogenics were signed with industry in 2016 with 4 different countries (SPS refrigerator – CH, cryogenic service module – UK, cryogenic valve boxes and 80 m distribution line – I, adaptation valve box for SM18 – F).

Large part of the HiLumi project is done with industry and not framework collaboration between different institutions.

⇒ We will need new Helium/Nitrogen storage, new refrigerators, valve boxes and hundreds meters of the distribution system... and we are here to help you selecting what could be adapted to your abilities !

Thank you for your attention

Spare Slides

HL-LHC configuration

The Inner Triplet region with in-kinds

The MS regions with in-kinds

The Insertion Region (till Q4)

What it would look like: Surface

Helium Vessels

New surface buildings, shafts and caverns to be constructed, to accommodate for new Hardware to be installed

New HL-LHC surface buildings at P1

SHM (Cryogenics)

New HL-LHC surface buildings at P5

HL-LHC underground structures at P1

HL-LHC underground structures at P5

