Simplified models of dark matter with a long-lived co-annihilation partner

Alexis Plascencia

with Valentin Khoze and Kazuki Sakurai

[arxiv:1702.00750]

Simplified models of dark matter

- EFT is a powerful and model independent approach
- lacktriangle Consistent description if and only if energy of interaction $E \ll M_{NP}$
- In the context of DM, there is no reason not to expect that $\,M_{MED}pprox m_{DM}$
- EFT might not the best framework for Dark Matter searches at colliders

Dark Matter

- Dirac or Majorana fermion
- Complex or real scalar
- Vector?

Mediators

- Vector
- Axial-vector
- Scalar
- Pseudoscalar

3-point interaction

Co-annihilation

Dark matter annihilation into pair of tau's

$$(\sigma v)_{\text{ann}}^{\text{s-wave}} = \frac{g_R^4 m_\tau^2}{32\pi m_\chi^4} \frac{1}{(1+r^2)^2}$$

 $\propto m_{ au}$ Chiral suppression

- Overproduces dark matter (Unless large couplings)
- We need a mechanism to reduce the DM relic density

Freeze-out temperature $T_F \sim m_{DM}/25$

Boltzmann factor
$$\exp\left(-\frac{\Delta M}{T}\right)$$

Co-annihilation:

$$\Delta M \lesssim m_{DM}/25$$

We need mass splitting of 4% of m_{DM}

Stau co-annihilation strip

Inspired by the stau co-annihilation strip in the CMSSM: (stau and neutralino close in mass)

We want to generalize this.

[Citron, Ellis, Luo, Marrouche, Olive, Vries 2012] [Desai, Ellis, Luo, Marrouche 2014]

1000

1200

LHC production is relevant

Direct Detection: No tree-level interaction with quarks

One-loop suppressed (Anapole moment)

[Kopp, Michaels, Smirnov 2014]

Indirect Detection: Due to chiral suppression, DM annihilation is velocity-suppressed

In today's Universe, DM non-relativistic v/c << 1

In the limit $m_{DM}\gg m_{ au}$:

 $\sigma v \propto v^2$ p-wave suppressed for Majorana DM

 $\sigma v \propto v^4$ d-wave suppressed for scalar DM

Nevertheless, the channel $SS \rightarrow ll\gamma$ can be relevant for future experiments for scalar DM For large ΔM

[Giacchino, Lopez-Honorez, Tytgat 2013]

LHC production

 Drell-Yann pair production of coannihilation partner

We study Dirac fermion and complex scalar as co-annihilation partners

Long-lived electrically charged particles

If $\Delta M < m_{ au}$ only 3-body and 4-body decays open:

Also ρ and a_1 mesons

$$\phi^* (\chi \tau_R) \subset \mathcal{L}$$

Gauge-invariant and renormalizable, no problems of unitarity

Gauge-invariant and renormalizable, no problems of unitarity

DM CAP
$$(Y = 1 L_{\tau} = 1)$$
 χ ϕ

$$\phi^* (\chi \tau_R) \subset \mathcal{L}$$

CMS and ATLAS 8 TeV $18.8 ext{ fb}^{-1}$

Real scalar dark matter

Vector dark matter (Model 3)

NOT gauge-invariant, requires UV-completion, e.g. Extra-Dimensions

CAP
$$(Y=1 \ L_{ au}=1)$$
 A_{μ} Ψ Kaluza-Klein photon γ^1 A_{μ} $(\overline{\Psi} \ \gamma^{\mu} \ au_R) \subset \mathcal{L}$ Kaluza-Klein au^1

- The lightest KK excitation is usually the 1st excitation of the photon
- DM spin=1, so there is no chiral suppression

$$m_n^2 = m_0^2 + \frac{n^2}{R^2}$$

Vector dark matter (Model 3)

Conclusions

- We have studied 4 classes of simplified models, that have 3-point interaction with τ -lepton
- We have considered the case for Majorana, real scalar and vector dark matter
- Instead of a mediator, these simplified models have a coannihilation partner that has non-zero hypercharge and the crucial signature are tracks of long-lived charged particles.
- In the four simplified models we have introduced there are only 3
 free parameters
- The possible discovery of a long-lived electrically charged particle could provide an insight into the nature of dark matter

Thank you.

Searching for long-lived charged particles

[Melzer-Pellmann, Pralavorio 2014]

 A long-lived charged particle escapes inner detector, leaving a charged track from ionization energy loss

 Long-lived charged particles that have lifetimes > 10⁻⁸ seconds, leave anomalous charged track and ionize the muon chamber

Indirect Detection

[Giacchino, Lopez-Honorez, Tytgat 2013]

Color coding corresponds to parameter $\frac{M_{CAP}}{M_{DM}} - 1$

Blue dots correspond to small mass splitting