Recent Single Top Quark Results at ATLAS

CoEPP 2017 Workshop, Glenelg 22 – 24 February, 2017

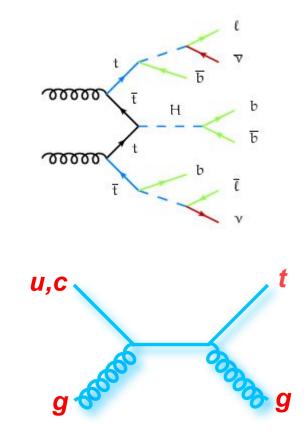
Kevin Finelli University of Sydney

The top quark - why study it?

Discovered in 1995... the top quark is the **most massive** elementary particle... by a large margin!

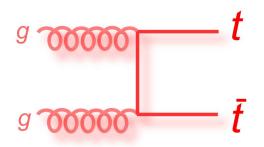
As a consequence, the top quark **decays** before it can form hadrons- thus we can study the properties of a bare quark

QUARK MASSES

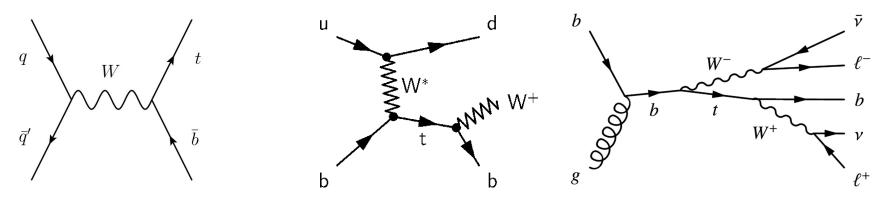


Sermilab 01-XXX

The top quark - why study it?


The coupling of the top to the **Higgs** is very large- measuring it may give hints about the **energy scale** of new physics

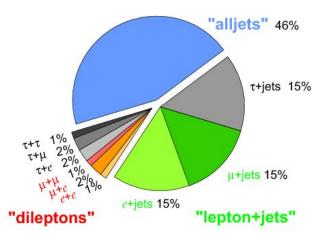
Potential for couplings to **new**, **undiscovered** particles is significant - need to look for small changes in expected rates of production



Top quarks in collisions

Top quark production may proceed by **pair production** or **single-top** production

Pair production via gluon fusion

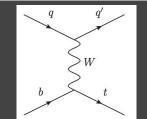

Single top production in the *s*-channel, *t*-channel, and associated *Wt* production

Top quarks in collisions

The top quark decays >99% of the time into a **W** boson and **b** quark

Analysis channels are defined by the **subsequent decay** of the *W*: **leptonic** or **hadronic**

Top Pair Branching Fractions



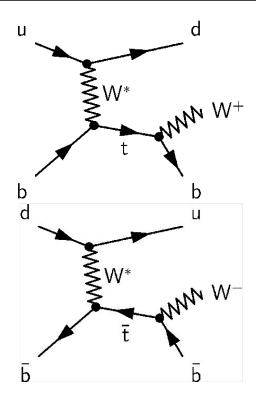
The ATLAS results

In this talk I'll present 3 recent results related to single top quark production:

- <u>t-channel cross-section 13 TeV</u>
 - Submitted 2016/09/13 to JHEP
- <u>t-channel cross-section 8 TeV</u>
 - Submitted 2017/02/09 to EPJC
- Wt cross-section 13 TeV
 - Submitted 2016/12/21 to JHEP

t-channel 13 TeV cross-section

Submitted to JHEP 3.2 fb⁻¹ 2015 $\sqrt{s=13}$ TeV

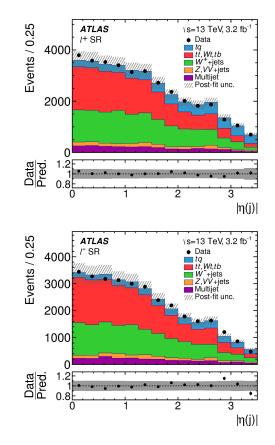

Analysis of inclusive *t*-channel cross-sections for single top and anti-top quarks

Tests of **NLO calculations** in new kinematic range, test of **PDF models**

Measure properties of *Wtb* vertex, measure V_{tb} element of **CKM matrix**

Predicted cross-section at NLO:

 $\sigma(tq)$ = 136.0 ^{+5.4} _{-4.6} pb and $\sigma(t^q)$ = 81.0 ^{+4.1} _{-3.6} pb


t-channel 13 TeV: event selection

Use **leptonic** *W* decays-> **lepton+jets** channel

Events are characterised by a light-flavour **forward jet** from the "spectator" quark

Require b-jet, E_T^{miss} , and m_T^W to suppress **multi-jets** background

Define additional **validation regions** for *W*+jets (relaxed *b*-tag eff.) and top pair production (extra *b*-jet)

t-channel 13 TeV: neural network

 ΔR of the charged lepton and the untagged jet

Neural network combining kinematic variables shown in table

Several inputs rely on kinematic reconstruction of neutrino momenta, based on *W* mass assumption

Variable

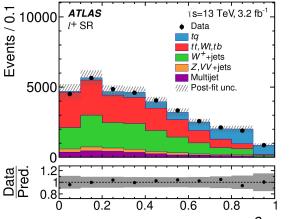
 $m(\ell \nu b)$

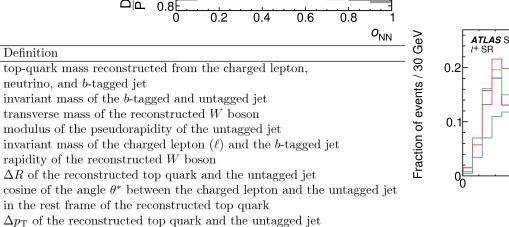
m(jb)

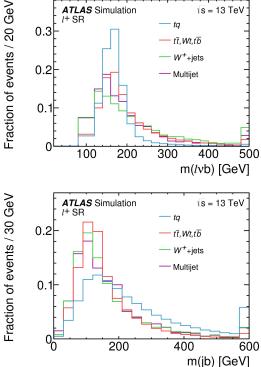
 $|\eta(j)|$

 $m(\ell b)$

 $\eta(\ell\nu)$


 $m_{\rm T}(\ell E_{\rm T}^{\rm miss})$


 $\Delta R(\ell \nu b, j)$


 $\cos \theta^*(\ell, j)$

 $\Delta p_{\rm T}(\ell \nu b, j)$

 $\Delta R(\ell, j)$

t-channel 13 TeV: fit and analysis

Binned maximum likelihood fit performed in I⁺ and I⁻ signal regions

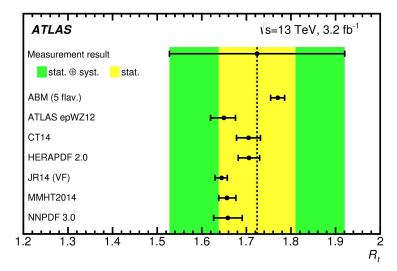
Pseudo-experiments varying signal acceptance, BG rates, and signal shape of NN distribution are used to estimate systematic unc.

Process	\hat{eta}	$\hat{\nu}(\ell^+)$	$\hat{ u}(\ell^-)$
tq	1.15 ± 0.03	4840 ± 140	-
$\overline{t}q$	1.12 ± 0.05	-	3040 ± 130
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$	0.91 ± 0.03	13700 ± 510	13600 ± 510
W^+ + jets	1.13 ± 0.05	12000 ± 550	
W^- + jets	1.21 ± 0.06	-	10500 ± 550
Z, VV + jets	-	1530	1410
Multijet background	-	2420	2420
Total estimated	-	34500 ± 760	31000 ± 760
Total observed	_	34459	31056

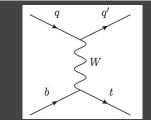
Source $\frac{\Delta\sigma(tq)}{\sigma(tq)}$ [%] $\frac{\Delta\sigma(\bar{t}q)}{\sigma(\bar{t}q)}$ [%]Data statistics ± 2.9 ± 4.1 Monte Carlo statistics ± 2.8 ± 4.2 Reconstruction efficiency and calibration uncertaintiesMuon uncertainties ± 0.8 ± 0.9	$\frac{\Delta R_t}{R_t} [\%]$ ± 5.0 ± 5.1 es ± 1.0 ± 0.7		
$ \begin{array}{c cccc} & \sigma(tq) & \tau & \sigma(tq) & \tau \\ \hline \text{Data statistics} & \pm 2.9 & \pm 4.1 \\ \hline \text{Monte Carlo statistics} & \pm 2.8 & \pm 4.2 \\ \hline \hline \text{Reconstruction efficiency and calibration uncertainties} \end{array} $	$ \frac{R_t}{\pm 5.0} $ $ \pm 5.1 $ es $ \pm 1.0 $		
$\frac{\text{Monte Carlo statistics}}{\text{Reconstruction efficiency and calibration uncertainties}}$	± 5.1 es ± 1.0		
Reconstruction efficiency and calibration uncertaintie	± 1.0		
⁰	± 1.0		
Muon uncertainties $\pm 0.8 \pm 0.9$			
	+0.7		
Electron uncertainties $< 0.5 \pm 0.5$	_ 0		
JES $\pm 3.4 \pm 4.1$	± 1.2		
Jet energy resolution $\pm 3.9 \pm 3.1$	± 1.1		
$E_{\rm T}^{\rm miss}$ modelling ± 0.9 ± 1.2	< 0.5		
<i>b</i> -tagging efficiency \pm 7.0 \pm 6.9	< 0.5		
c-tagging efficiency $< 0.5 \pm 0.5$	± 0.6		
Light-jet tagging efficiency $< 0.5 < 0.5$	< 0.5		
Pile-up reweighting ± 1.5 ± 2.2	\pm 3.8		
Monte Carlo generators			
tq parton shower generator $\pm 13.0 \pm 14.3$	± 1.9		
tq NLO matching $\pm 2.1 \pm 0.7$	± 2.8		
tq radiation ± 3.7 ± 3.4	\pm 3.7		
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ parton shower generator $\pm 3.2 \pm 4.4$	± 1.2		
$t\bar{t}, Wt, t\bar{b} + \bar{t}b$ NLO matching $\pm 4.4 \pm 8.6$	± 4.6		
$t\bar{t}, Wt, tb + \bar{t}b$ radiation $< 0.5 \pm 1.1$	± 0.7		
PDF $\pm 0.6 \pm 0.9$	< 0.5		
Background normalisation			
Multijet normalisation $\pm 0.3 \pm 2.0$	± 1.8		
Other background normalisation $\pm 0.4 \pm 0.5$	< 0.5		
Luminosity $\pm 2.1 \pm 2.1$	< 0.5		
Total systematic uncertainty $\pm 17.5 \pm 20.0$	± 10.2		
Total uncertainty $\pm 17.8 \pm 20.4$	± 11.4		

t-channel 13 TeV: results

Top and anti-top cross-sections measured independently, as well as their ratio R_r:

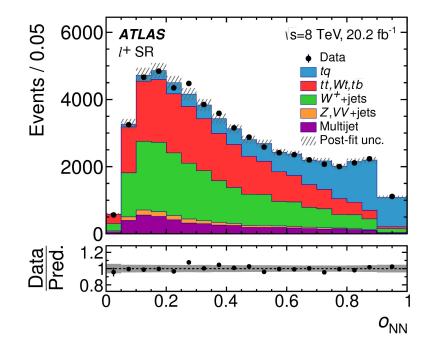

$$\sigma(tq) = 156 \pm 5 \text{ (stat.)} \pm 27 \text{ (syst.)} \pm 3 \text{ (lumi.) pb}$$

$$\sigma(\bar{t}q) = 91 \pm 4 \text{ (stat.)} \pm 18 \text{ (syst.)} \pm 2 \text{ (lumi.) pb}$$


 $R_t = 1.72 \pm 0.09 \,(\text{stat.}) \pm 0.18 (\text{syst.}),$

Ratio measurements compared to predictions from several PDF models (right)

Measurements are all in agreement with best SM predictions


t-channel 8 TeV cross-sections

Submitted to EPJC 20.2 fb⁻¹ 2012 $\sqrt{s=8}$ TeV

Analysis of **total**, **fiducial**, and **differential** *t*-channel cross-sections

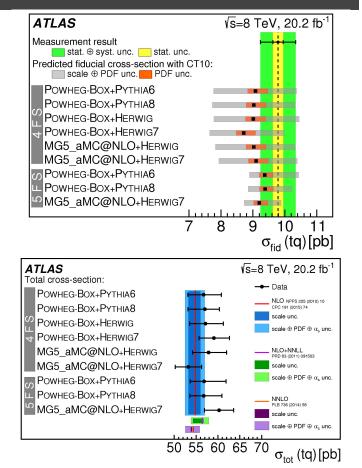
Variety of tests of **NLO** calculations, measurements of V_{tb} vertex, test of **PDF models** Similar techniques as 13 TeV, following slides will focus on results/interpretation

t-channel 8 TeV: uncertainties

Uncertainties on fiducial cross-sections are more **evenly spread** among sources than in the 13 TeV measurement

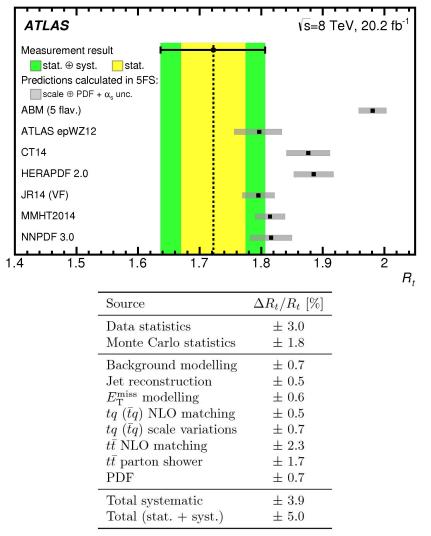
Dominant uncertainties are **lepton reco**, **JES**, background **top pair NLO matching** model

Source	$\frac{\Delta\sigma_{\rm fid}(tq) / \sigma_{\rm fid}(tq)}{[\%]}$	$\begin{array}{c} \Delta\sigma_{\rm fid}(\bar{t}q) \ / \ \sigma_{\rm fid}(\bar{t}q) \\ [\%] \end{array}$
Data statistics	± 1.7	± 2.5
Monte Carlo statistics	± 1.0	± 1.4
Background normalisation	< 0.5	< 0.5
Background modelling	± 1.0	± 1.6
Lepton reconstruction	± 2.1	± 2.5
Jet reconstruction	± 1.2	± 1.5
Jet energy scale	± 3.1	± 3.6
Flavour tagging	± 1.5	± 1.8
$E_{\rm T}^{\rm miss}$ modelling	± 1.1	± 1.6
b/\bar{b} tagging efficiency	± 0.9	± 0.9
PDF	± 1.3	± 2.2
$tq~(\bar{t}q)$ NLO matching	± 0.5	< 0.5
$tq \ (\bar{t}q)$ parton shower	± 1.1	± 0.8
$tq \ (\bar{t}q)$ scale variations	± 2.0	± 1.7
$t\bar{t}$ NLO matching	± 2.1	± 4.3
$t\bar{t}$ parton shower	± 0.8	± 2.5
$t\bar{t}$ scale variations	< 0.5	< 0.5
Luminosity	± 1.9	± 1.9
Total systematic	\pm 5.6	\pm 7.3
Total (stat. $+$ syst.)	± 5.8	\pm 7.8

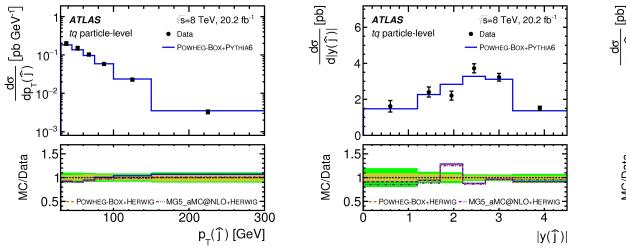

t-channel 8 TeV: fiducial/inclusive

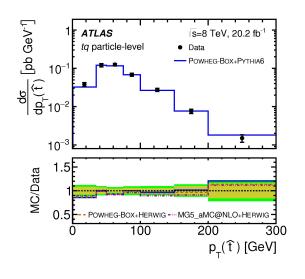
Fiducial cross-section (top) measured only in region of interest defined by particle observables

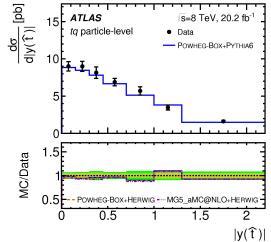
Fiducial region defined to be close to reconstructed event acceptance:


1 charged lepton, 2 jets (1 b-tagged), m(*lb*)>160 GeV

Total cross-section (below) extrapolated to full phase-space, comparable with fixed-order calculations

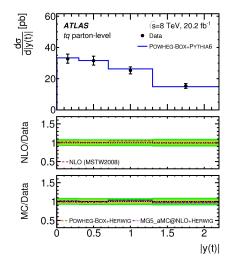

t-channel ratio measurement

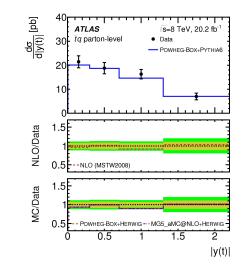

- **Ratio** of top to anti-top cancels many uncertainties, discriminates between PDF predictions
- Uncertainties on *R_t* dominated by **statistics**, **top pair MC** model

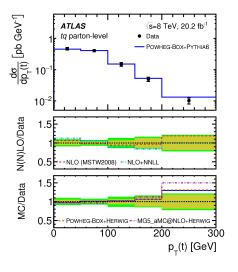


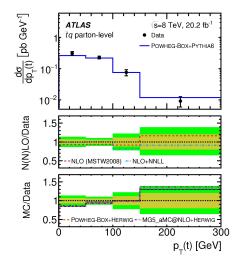
t-channel cross-sections

Distributions of $p_T(t)$, |y(t)|, $p_T(j)$, and |y(j)| measured at **particle**-level and parton-level







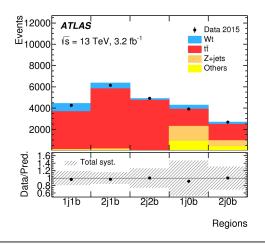

t-channel cross-sections

Distributions of $p_T(t)$, |y(t)|, $p_T(j)$, and |y(j)| measured at particle-level and **parton**-level

Wt 13 TeV cross-section

First 5 σ observation of this process was in 8 TeV LHC data by ATLAS and CMS Primary goal now is to explore *Wtb* vertex in a new kinematic regime (13 TeV)

Theoretical cross-section (NLO+NNLL):


 σ_{theory} = 71.7 ± 1.8 (scale) ± 3.4 (PDF) pb

b $W^$ bt W^+ v ρ^+

Submitted to JHEP 3.2 fb⁻¹ 2015 $\sqrt{s}=13$ TeV

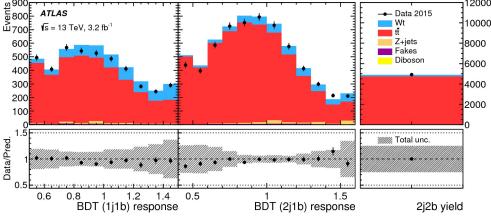
Wt 13 TeV: event selection

Require two charged leptons and at least 1 jet Separate based on number of jets (j) and *b*-tagged jets (b): 1j1b, 2j1b, 2j2b Various E_{τ}^{miss} and m_{μ} cuts to reduce Z+jets background

At least one jet with $p_{\rm T} > 25 \,{\rm GeV}$, $|\eta| < 2.5$ Exactly two leptons of opposite charge with $p_{\rm T} > 20 \,{\rm GeV}$, $|\eta| < 2.5$ for muons and $|\eta| < 2.47$ excluding $1.37 < |\eta| < 1.52$ for electrons At least one lepton with $p_{\rm T} > 25 \,{\rm GeV}$, veto if third lepton with $p_{\rm T} > 20 \,{\rm GeV}$ At least one lepton matched to the trigger object

Different flavour	$\begin{split} E_{\rm T}^{\rm miss} &> 50{\rm GeV},\\ E_{\rm T}^{\rm miss} &> 20{\rm GeV}, \end{split}$	$\label{eq:metric} \begin{split} & \text{if } m_{\ell\ell} < 80 \text{GeV} \\ & \text{if } m_{\ell\ell} > 80 \text{GeV} \end{split}$
	$E_{\mathrm{T}}^{\mathrm{miss}} > 40 \mathrm{GeV},$	always
	veto,	if $m_{\ell\ell} < 40 \mathrm{GeV}$
Same flavour	$4E_{\rm T}^{\rm miss} > 5m_{\ell\ell},$	if $40{\rm GeV} < m_{\ell\ell} < 81{\rm GeV}$
	veto,	if $81{\rm GeV} < m_{\ell\ell} < 101{\rm GeV}$
	$2m_{\ell\ell} + E_{\rm T}^{\rm miss} > 300 {\rm GeV}.$	if $m_{\ell\ell} > 101 \mathrm{GeV}$

Wt 13 TeV: BDT analysis


Boosted decision tree trained for 1j1b and 2j1b regions

Inputs based on momenta, angles of leptons, jets, $E_{\rm T}^{\rm miss}$

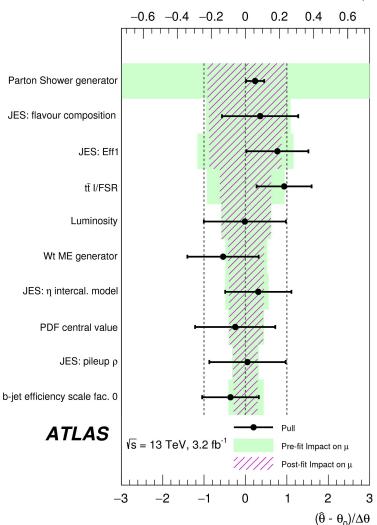
	· · · · · · · · · · · · · · · · · · ·		
1j1b		2j1b	
Variable	$S[10^{-2}]$	Variable	$S~\left[10^{-2}\right]$
$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1 \ell_2 E_{\mathrm{T}}^{\mathrm{miss}} j_1)$	5.3	$p_{\mathrm{T}}^{\mathrm{sys}}(\ell_1\ell_2)$	1.7
$\Delta p_{\rm T}(\ell_1 \ell_2, E_{\rm T}^{\rm miss} j_1)$	2.9	$\Delta R(\ell_1 \ell_2, E_{\mathrm{T}}^{\mathrm{miss}} j_1 j_2)$	1.7
$\sum E_{\mathrm{T}}$	2.7	$\Delta R(\ell_1\ell_2, j_1j_2)$	1.5
$\Delta p_{\rm T}(\ell_1 \ell_2, E_{\rm T}^{\rm miss})$	$1.2 \\ 0.9$	$m(\ell_1 j_2)$	1.4
$p_{\rm T}^{\rm sys}(\ell_1 E_{\rm T}^{\rm miss} j_1) \\ C(\ell_1 \ell_2)$	$0.9 \\ 0.9$	$\Delta p_{\rm T}(\ell_1 \ell_2, E_{\rm T}^{\rm miss})$	1.4
$\Delta p_{\mathrm{T}}(\ell_1, E_{\mathrm{T}}^{\mathrm{miss}})$	0.9	$\Delta p_{ m T}(\ell_1,j_1)$	1.4
1 - (- / 1 /		$m(\ell_1 j_1)$	1.3
BDT discriminant	8.6	$p_{\mathrm{T}}(\ell_1)$	1.3
		$\sigma(p_{\rm T}^{\rm sys})(\ell_1\ell_2 E_{\rm T}^{\rm miss}j_1)$	1.2
· · · · · · · · · · · · · · · · · · ·	12000 ø	$\Delta R(\ell_1,j_1)$	1.2
Data 2015	12000 <u>op</u> 10000 <u>op</u>	$p_{\mathrm{T}}(j_2)$	0.9
tt Z+iets	1 -	$\sigma(p_{\rm T}^{\rm sys})(\ell_1\ell_2 E_{\rm T}^{\rm miss}j_1j_2)$	0.9
Fakes	8000	$m(\ell_2 j_1 j_2)$	0.3
Diboson	-6000	$m(\ell_2 j_1)$	0.3

 $m(\ell_2 j_2)$

BDT discriminant

2	0
_	-

0.1


10.9

Wt 13 TeV: Fitting

Binned maximum **likelihood fit** to BDT distribution in 1j1b, 2j1b, and total yield in 2j2b

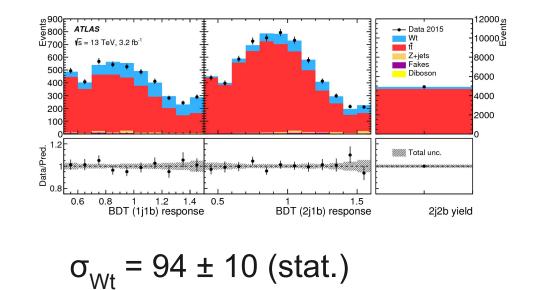
Top pair-enriched bins act as **control regions** to **constrain** parton shower, initial/final state radiation systematics

Most significant systematics are **top pair model**, **jet energy scale**

21

Wt 13 TeV: Fitting

Binned maximum **likelihood fit** to BDT distribution in 1j1b, 2j1b, and total yield in 2j2b

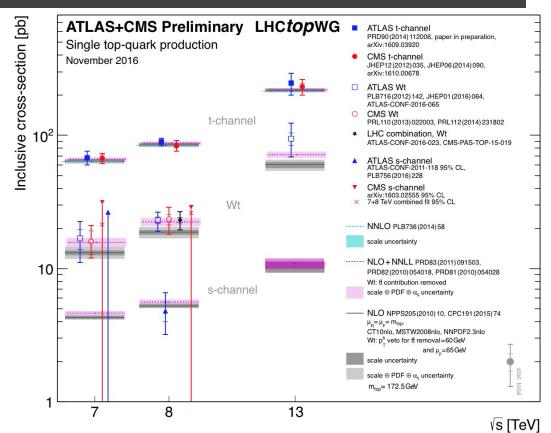

Top pair-enriched bins act as **control regions** to **constrain** parton shower, initial/final state radiation systematics

Most significant systematics are **top pair model**, **jet energy scale**

Source	$\Delta \sigma_{Wt} / \sigma_{Wt} [\%]$
Jet energy scale	21
Jet energy resolution	8.6
$E_{\rm T}^{\rm miss}$ soft terms	5.3
b-tagging	4.3
Luminosity	2.3
Lepton efficiency, energy scale and resolution	1.3
NLO matrix element generator	18
Parton shower and hadronisation	7.1
Initial-/final-state radiation	6.4
Diagram removal/subtraction	5.3
Parton distribution function	2.7
Non- $t\bar{t}$ background normalisation	3.7
Total systematic uncertainty	30
Data statistics	10
Total uncertainty	31

Wt 13 TeV: results

Measured cross-section agrees well with **NLO+NNLL** prediction Post-fit BDT distributions also show good agreement with MC predictions


⁺²⁸ (syst.)

± 2 (lumi.) pb

Summary

Top quark physics in ATLAS has been an extremely productive area in 2016-2017

Many new results still to come with Run 2 data!

Backup slides