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Cosmic Neutrino Background
Decoupling of neutrinos results in the Cosmic Neutrino Background
(CνB), T ∼ 1 MeV

The CνB temperature is related to that of the CMB:

Tν
T0

=

( 4
11

) 1
3

where T0 = 2.725 K is the temperature of the CMB today.

Weakly interacting nature and low temperature → not yet observed
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Neutrino Masses and Relic Asymmetry
A very large lepton asymmetry can be stored in the CνB.

Flavour dependent bound on the asymmetries is

LCνB
α =

nνα − n̄να

nγ
=

π2

12ζ(3)

(
ξα +

ξ3
α

π2

)
where the flavour independent bounds on ξα are −0.07 < ξ < 0.22.

Majorana particles → the CνB will be parity violating.

Possible indirect evidence of the CνB via induced parity violating
radiative corrections to the graviton propagator.

Homogeneous neutrino gas with a chemical potential µ.
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Addition to the Graviton Propagator in CνB
Lµ = µν̄γ0γ5ν, which alters the neutino propagator

First order µ parity violating contribution to the fermion propagator:

S(p) = S0(p) + µγ0γ
5 (/p + m)2

(p2 −m2)2 + ...

Parity violating polarisation tensor contribution:

Πµνρσ = −
1
2

ˆ d4p
(2π)4 (2p + k)ν (2p + k)σ

[
Tr(γµS0(p + k)γρS1(p)) + Tr(γρS0(p)γµS1(p + k))

]
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Graviton Polarisation Tensor
We find a divergent quantity:

Π(div)
µνρσ = −1

ε

µ

2π2 kαεµρα0m2ηνσ

– This term violates gauge invariance (hµν → hµν + kµλν + kνλµ).

– Transversality requires: kµΠµνρσ = 0 and kνΠµνρσ = 0.

We obtain the following simple form for the polarisation tensor,

Πµνρσ = µεµρα0kα[kνkσ − k2ηνσ]C(k2)

where

C(k2) =

{
− 1

1920π2
k2

m2 , if k2/m2 � 1
1

192π2 , if k2/m2 � 1

N. D. Barrie (USyd) Grav. Wave Instabilities in the CνB February 16, 2017 6 / 18



Effective Graviton Action
In the limit k2/m2

ν � 1 ,

Seff = − µ

192π2

ˆ
d4xεµρα0hµν∂α(�hρσηνσ − ∂ν∂σhρσ)

=
µ

48π2

ˆ
d4x K 0

The 4 dimensional Chern-Simons topological current:

Kβ = εβαµν(Γσαρ∂µΓρνσ −
2
3ΓσαρΓρµλΓλνσ).

Replicating Chern-Simons modified gravity.

SCS =

ˆ
d4x (∂µθ)Kµ =

ˆ
d4x θ(∗RR)
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Birefringent Gravitational Wave
Propagation
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Graviton Propagation Effects

Chern-Simons modification induces a birefringence effect.

eLISA can measure sources z . 30, and differentiates polarisations.

Consider propagation in a FRW universe.

Consider hij =
Aij

a(η) exp[−i(φ(η)− κnkxk)]

– Decomposing into the two circularly polarised states: eR
ij and eL

ij

– Take the action S = SEH + Seff

– Find the accumulated phase over propagation.
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Graviton Propagation Effects
From the equations of motion:

(iφR,L
,ηη + (φR,L

,η )2 +H,η +H2 − κ2)

(
1− λR,Lκθ,η

a2

)
=

iλR,Lκ

a2 (θ,ηη − 2Hθ,η)(φR,L
,η − iH)

Solve in the matter dominated epoch, a(η) = a0η
2 = a0

1+z .

Accumulated phase to first order in θ,

∆φR,L = iλR,LkH0

ˆ 1

η

[1
4θ,ηη −

1
η
θ,η

] dη
η4

Temperature dependence of µ ⇒ θ,η =
(

a(η0)
a(η)

)2 µ0
48π2M2

p
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Birefringence of Gravitational Waves
For the CνB,

∆φR,L = −i λR,LµH0
288π2M2

p

( k
1 GeV

)
(1 + z)4

Ratio of the polarisations:

hR
hL
∝ e−2|∆φ|

From the current bounds on the CνB, |i∆φR,L| . 10−87
(

k
1 GeV

)
, for

z ∼ 30

Now consider the propagation of GWs from early sources, larger µν
and longer accumulated propagation time. Conceivably, any source
could provide constraints.
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Birefringence of Gravitational Waves

Consider GWs produced in the radiation dominated epoch:

∆φR,L
rad = iλR,L

|k|
Ωr,0H2

0

ˆ 1

η

[1
2θ,ηη −

1
η
θ,η

] dη
η2

' −iλR,Lξν

( |k|
1 GeV

)( Ts
1 TeV

)4

where Ωr,0 ∼ 9.2 · 10−5 is the radiation density parameter today.

Redshift defined in terms of the source/asymmetry temperature Ts
(whichever is lowest).

It is possible to get significant birefringent behaviour in the
propagation of GWs from primordial sources.
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Induced Vaccum Decay

N. D. Barrie (USyd) Grav. Wave Instabilities in the CνB February 16, 2017 13 / 18



Vaccum Decay from Induced Ghost-like Modes
Interaction describing 0→ gγγ, (hcan

µν = mcanhcan
µν ):

Sint ∼
1

mcan

ˆ
d4x 1

2hcanFµνFµν − hcan
µν FµαF να

where

mcan = Mp

√
1 + λR,L

|k|
amCS

, where mCS(t) =
M2

p
µν

=
a(t)M2

p
µ0

Consider when we have ghost modes. Require a phase space cutoff,
or will decay to infinity. Take comoving momenta cutoff:
|k| ∼ Λ→ mcan(t) '

√
λµΛ

a

Total decay width is approximately:

Γ ∼ Λ6

m2
can

=
a(t)Λ6

|k|µν
=

a(t)2Λ5

µ0
.
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Temperature-Asymmetry relation
After reheating the universe is radiation dominated:

a(t) =

√
2Ω

1/2
r ,0 H0t

where Ωr ,0 ∼ 9.2 · 10−5.

The ghost term is no longer present when T = T∗:

1 =
Λ

a(t∗)mCS(t∗)
⇒ a(t∗) =

ξT∗Λ
M2

p

Given the known temperature dependence of the scale factor:

T∗ '
440√
ξ

GeV

√
Mp
Λ
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Generated Photon Spectrum and Energy Density
Calculate the spectrum and the energy density of photons generated
by the induced vacuum decay:

1
a3

d
dt (a3n(k, t)) = Γδ

( |k|
Λ
− 1

)
and dE

d3xd ln |k| ∼ |k|n0(|k|)

Integrating this effect between Ta and T∗:

dE
d3xd ln k ∼

ξ4T 5
∗

10T 2
a

√
M3

p
H0

(
Λ

Mp

)11

Conservative bound: the universe is not radiation dominated today,

dE
d3xd ln k . M2

pH2
0
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Photon Energy Density Produced
Assuming Ta > T∗:

ην . 10−41
( Ta

1015 GeV

)4/3 (Mp
Λ

)17/3

or

T∗ & 1023 GeV
( Ta

1015 GeV

)−2/3( Λ

Mp

)17/6

Conflicts with observation unless Λ� Mp.

If instead Ta . T∗, i.e. no vacuum decay:

ην . 0.033
(2000 GeV

Ta

)2 Λ

Mp

where ην . 0.033 is from BBN constraints.
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Conclusion and Future Work
Parity asymmetric CνB → Chern-Simons gravity term induced.

Potentially observable birefringent effect for large z sources.

Bounds from vacuum decay on the temperature a given neutrino
asymmetry can be generated.

ην . 0.033
(2000 GeV

Ta

)2 Λ

Mp

Future work
Further exploration of the mechanism, and GW propagation.

Early universe implications: Baryogenesis, dark matter, parity
asymmetries.
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