Constraining noncommutative space-time from GW150914

Cyril Lagger

Archil Kobakhidze, CL, Adrian Manning, PRD 94 (2016) 064033

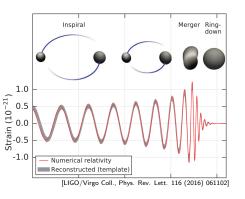
CoEPP Annual Workshop 2017

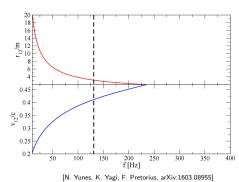
22 February 2017 - Adelaide

Overview

GW150914

- Inspiral, merger and ring-down of a binary black hole observed by LIGO.
- Masses of $36^{+5}_{-4}M_{\odot}$ and $29^{+4}_{-4}M_{\odot}$.
- \circ Frequency ranging from 35 to 250 Hz and velocity up to $\sim 0.5c$.





An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform of such GWs :

- o post-Newtonian formalism provides an analytical expansion in $\frac{v}{c}$ (valid only during the inspiralling)
- numerical Relativity provides accurate simulations, including the merger and the ring-down

An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform of such GWs :

- o post-Newtonian formalism provides an analytical expansion in $\frac{v}{c}$ (valid only during the inspiralling)
- numerical Relativity provides accurate simulations, including the merger and the ring-down

GW150914 data are in good agreement with GR predictions

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

 \Rightarrow opportunity to test various models beyond GR.

[N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955]

An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform of such GWs :

- o post-Newtonian formalism provides an analytical expansion in $\frac{v}{c}$ (valid only during the inspiralling)
- numerical Relativity provides accurate simulations, including the merger and the ring-down

GW150914 data are in good agreement with GR predictions

[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]

 \Rightarrow opportunity to test various models beyond GR.

[N. Yunes, K. Yagi, F. Pretorius, arXiv:1603.08955]

Our objective: constrain the scale of noncommutative space-time.

The post-Newtonian formalism

L. Blanchet, Living Rev. Rel. 17 (2014)

Definitions and notations

The full EFE in the harmonic gauge $(\partial_{\mu}h^{\alpha\mu}=0)$ can be written as

$$\Box h^{\alpha\beta} = \frac{16\pi G}{c^4} \tau^{\alpha\beta}$$

with the gravitational-field amplitude h and the matter-gravitational source τ :

$$h^{\alpha\beta} = \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}, \qquad \tau^{\alpha\beta} = |g|T^{\alpha\beta} + \frac{c^4}{16\pi G}\Lambda^{\alpha\beta}.$$

Definitions and notations

The full EFE in the harmonic gauge $(\partial_{\mu}h^{\alpha\mu}=0)$ can be written as

$$\Box h^{\alpha\beta} = \frac{16\pi G}{c^4} \tau^{\alpha\beta}$$

with the gravitational-field amplitude h and the matter-gravitational source τ :

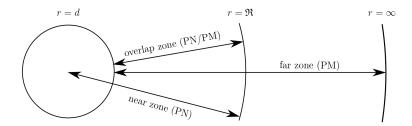
$$h^{\alpha\beta} = \sqrt{-g}g^{\alpha\beta} - \eta^{\alpha\beta}, \qquad \tau^{\alpha\beta} = |g|T^{\alpha\beta} + \frac{c^4}{16\pi G}\Lambda^{\alpha\beta}.$$

For a source term with characteristic velocity v, the post-Newtonian formalism (PN) solves the EFE as an expansion in powers of $\frac{v}{c}$. As a convention, a term of order n is called a $\frac{n}{2}$ PN term and written as

$$\mathcal{O}\left(n\right) \equiv \mathcal{O}\left(\frac{v^n}{c^n}\right)$$

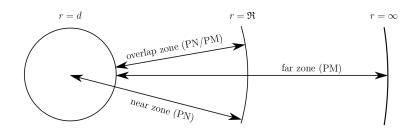
How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the overlap zone:



How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the overlap zone:



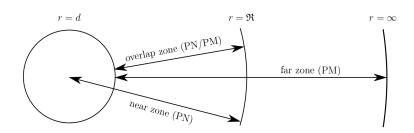
Post Minkowskian (PM) - G^n :

•
$$h^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_n^{\alpha\beta}$$

$$\circ \Box h^{\alpha\beta} = \Lambda^{\alpha\beta}$$

How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the overlap zone:



Post Newtonian (PN) - $\left(\frac{1}{c}\right)^n$:

$$o h^{\alpha\beta} = \sum_{n=2}^{\infty} \frac{1}{c^n} h_n^{\alpha\beta}$$

$$\sigma = \sum_{n=-2}^{\infty} \frac{1}{c^n} \tau_n^{\alpha \beta}$$

Post Minkowskian (PM) - G^n :

•
$$h^{\alpha\beta} = \sum_{n=1}^{\infty} G^n h_n^{\alpha\beta}$$

$$\circ \Box h^{\alpha\beta} = \Lambda^{\alpha\beta}$$

Matter source

Consider a binary system of two black holes of masses m_1 and m_2 . It is usually approximated by two point-like particles:

$$T^{\mu\nu}(\mathbf{x},t) = \frac{m_1}{\sqrt{gg\rho\sigma \frac{v_1^{\rho}v_1^{\sigma}}{c^2}}} v_1^{\mu}(t)v_1^{\nu}(t) \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

Matter source

Consider a binary system of two black holes of masses m_1 and m_2 . It is usually approximated by two point-like particles:

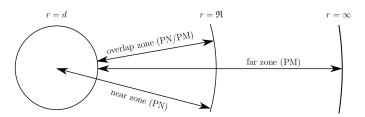
$$T^{\mu\nu}(\mathbf{x},t) = \frac{m_1}{\sqrt{gg\rho\sigma}\frac{v_1^\rho v_1^\sigma}{c^2}} \ v_1^\mu(t)v_1^\nu(t) \ \delta^3(\mathbf{x}-\mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

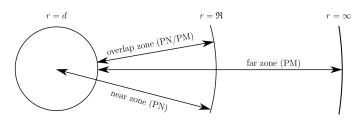
Useful parametrization:

• total mass: $M = m_1 + m_2$

• reduced mass: $\mu = \frac{m_1 m_2}{M}$

 $\circ~$ symmetric mass ratio: $\nu = \frac{\mu}{M} = \frac{m_1 m_2}{M^2}$



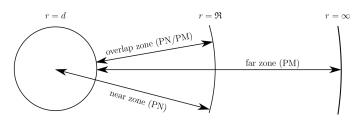


Equations of motion - energy E:

$$\nabla_{\nu}T^{\mu\nu}=0$$

$$\circ \ \, \mathbf{a}_1 = - \tfrac{\mathit{Gm}_2}{\mathit{r}_{12}^2} \mathbf{n}_{12} + \mathcal{O}(2)$$

$$E = \frac{m_1 v_1^2}{2} - \frac{G m_1 m_2}{2 r_{12}} + \mathcal{O}(2) + 1 \leftrightarrow 2$$



Equations of motion - energy E:

$$\nabla_{\nu}T^{\mu\nu}=0$$

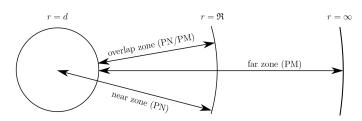
$$\mathbf{a}_1 = -\frac{Gm_2}{r_{12}^2}\mathbf{n}_{12} + \mathcal{O}(2)$$

o
$$E = \frac{m_1 v_1^2}{2} - \frac{Gm_1 m_2}{2r_{12}} + \mathcal{O}(2) + 1 \leftrightarrow 2$$

Radiated flux \mathcal{F} :

$$\circ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

$$\circ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{32G^3M^5\nu^2}{5r^5} + \mathcal{O}(2) \right)$$



Equations of motion - energy E:

$$\nabla_{\nu} T^{\mu\nu} = 0$$

$$\mathbf{a}_1 = -\frac{Gm_2}{r_{12}^2}\mathbf{n}_{12} + \mathcal{O}(2)$$

$$E = \frac{m_1 v_1^2}{2} - \frac{G m_1 m_2}{2 r_{12}} + \mathcal{O}(2) + 1 \leftrightarrow 2$$

Radiated flux \mathcal{F} :

$$\circ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

Conservation of energy implies the balance equation and the orbital phase:

$$\frac{dE}{dt} = -\mathcal{F} \quad \Rightarrow \quad \phi = \int \Omega(t) dt$$

State-of-the-art computations

For data analysis, consider the waveform in frequency space:

$$h(f) = A(f) e^{i\psi(f)}.$$

State-of-the-art computations

For data analysis, consider the waveform in frequency space:

$$h(f) = A(f) e^{i\psi(f)}.$$

The phase $\psi(f)$ (Fourier transform of $\phi(t)$) has been calculated to 3.5PN accuracy:

$$\psi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} \sum_{j=0}^{7} \varphi_j \left(\frac{\pi MGf}{c^3}\right)^{(j-5)/3},$$

State-of-the-art computations

For data analysis, consider the waveform in frequency space:

$$h(f) = A(f) e^{i\psi(f)}.$$

The phase $\psi(f)$ (Fourier transform of $\phi(t)$) has been calculated to 3.5PN accuracy:

$$\psi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128} \sum_{j=0}^{7} \varphi_j \left(\frac{\pi MGf}{c^3}\right)^{(j-5)/3},$$

where the phase coefficients are

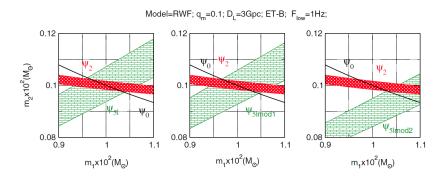
$$\begin{array}{lcl} \varphi_0 & = & 1 \\ \varphi_1 & = & 0 \\ \varphi_2 & = & \frac{3715}{756} + \frac{55}{9}\nu \\ \varphi_3 & = & -16\pi \\ \varphi_4 & = & \frac{15293365}{508032} + \frac{27145}{504}\nu + \frac{3085}{72}\nu^2 \end{array}$$

[T. Damour, B. Iyer and B. Sathyaprakash, Phys. Rev. D 63 (2001) 044023]

[G. Faye, S. Marsat, L. Blanchet, B. Iyer, Class. Quantum Grav. 29 (2012) 175004]

GR vs. GW150914

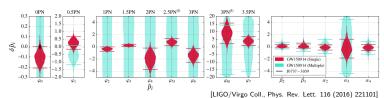
Pictorial representation on simulated data



[C. Mishra, K. Arun, B. Iyer, B. Sathyaprakash, Phys. Rev. D 82 (2010) 064010]

Bayesian analysis from GW150914

waveform regime			median		GR quantile		$\log_{10} B_{\mathrm{model}}^{\mathrm{GR}}$	
	parameter	f-dependence	single	multiple	single	multiple	single	multiple
early-inspiral regime	$\delta \hat{\varphi}_0$	$f^{-5/3}$	$-0.1^{+0.1}_{-0.1}$	1.3+3.0	0.94	0.30	1.9 ± 0.2	
	$\delta \hat{\varphi}_1$	$f^{-4/3}$	$0.3^{+0.4}_{-0.4}$	$-0.5^{+0.6}_{-0.6}$	0.16	0.93	1.6 ± 0.2	
	$\delta \hat{\varphi}_2$	f^{-1}	$-0.4^{+0.3}_{-0.4}$	$-1.6^{+18.8}_{-16.6}$	0.96	0.56	1.2 ± 0.2	
	$\delta \hat{\varphi}_3$	$f^{-2/3}$	$0.2^{+0.2}_{-0.2}$	$2.0^{+13.4}_{-13.9}$	0.02	0.42	1.2 ± 0.2	
	$\delta \hat{\varphi}_4$	$f^{-1/3}$	$-1.9^{+1.6}_{-1.7}$	$-1.9^{+19.3}_{-16.4}$	0.98	0.56	0.3 ± 0.2	
	$\delta \hat{\varphi}_{5l}$	$\log(f)$	$0.8^{+0.5}_{-0.6}$	$-1.4^{+18.6}_{-16.9}$	0.01	0.55	0.7 ± 0.4	
	$\delta \hat{\varphi}_6$	$f^{1/3}$	$-1.4^{+1.1}_{-1.1}$	$1.2^{+16.8}_{-18.9}$	0.99	0.47	0.4 ± 0.2	
	$\delta \hat{\varphi}_{6l}$	$f^{1/3}\log(f)$	$8.9^{+6.8}_{-6.8}$	$-1.9^{+19.1}_{-16.1}$	0.02	0.57	-0.3 ± 0.2	
	$\delta \hat{\varphi}_7$	$f^{2/3}$	$3.8^{+2.9}_{-2.9}$	$3.2^{+15.1}_{-19.2}$	0.02	0.41	-0.0 ± 0.2	
intermediate regime	$\delta \hat{\beta}_2$	$\log f$	$0.1^{+0.4}_{-0.3}$	$0.2^{+0.6}_{-0.5}$	0.24	0.28	1.4 ± 0.2	2.3 ± 0.2
	$\delta \hat{\beta}_3$	f^{-3}	$0.1^{+0.6}_{-0.3}$	$-0.0^{+0.8}_{-0.7}$	0.31	0.56	1.2 ± 0.4	2.5 ± 0.2
merger-ringdown regime	$\delta \hat{\alpha}_2$	f^{-1}	$-0.1^{+0.4}_{-0.4}$	$0.0^{+1.0}_{-1.2}$	0.68	0.50	1.2 ± 0.2	2.1 ± 0.4
	$\delta \hat{\alpha}_3$	$f^{3/4}$	$-0.3^{+1.9}_{-1.5}$	$0.0^{+4.4}_{-4.4}$	0.60	0.51	0.7 ± 0.2	
	$\delta \hat{\alpha}_4$	$\tan^{-1}(af+b)$	$-0.1^{+0.5}_{-0.5}$	$-0.1^{+1.1}_{-1.0}$	0.68	0.62	1.1 ± 0.2	



Noncommutative corrections to the waveform

A. Kobakhidze, CL, A. Manning, PRD 94 (2016) 064033

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Snyder formalized the idea [Phys. Rev. 71 (1947) 38].
- O Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Snyder formalized the idea [Phys. Rev. 71 (1947) 38].
- O Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$$
 $\Delta x^{\mu} \Delta x^{\nu} \ge \frac{1}{2} |\theta^{\mu\nu}|$

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Snyder formalized the idea [Phys. Rev. 71 (1947) 38].
- O Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$$
 $\Delta x^{\mu} \Delta x^{\nu} \ge \frac{1}{2} |\theta^{\mu\nu}|$

Previous constraints on noncommutative scale at inverse \sim TeV.

[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

NC space-time arises in a number of contexts:

- Originally proposed by Heisenberg as an effective UV cutoff.
- Snyder formalized the idea [Phys. Rev. 71 (1947) 38].
- O Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].
- Low-energy limit of string theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032].

We focus on the canonical algebra of coordinates:

$$[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$$
 $\Delta x^{\mu} \Delta x^{\nu} \ge \frac{1}{2} |\theta^{\mu\nu}|$

Previous constraints on noncommutative scale at inverse \sim TeV.

[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

$$f(x) \star g(x) = f(x)g(x) + \sum_{n=1}^{+\infty} \left(\frac{i}{2}\right)^n \frac{1}{n!} \theta^{\alpha_1 \beta_1} \cdots \theta^{\alpha_n \beta_n} \partial_{\alpha_1} \cdots \partial_{\alpha_n} f(x) \partial_{\beta_1} \cdots \partial_{\beta_n} g(x)$$

Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

 Consider a Schwarzschild black hole described by a massive scalar field in noncommutative QFT:

$$T_{NC}^{\mu\nu}(x) = \frac{1}{2} \left(\partial^{\mu}\phi \star \partial^{\nu}\phi + \partial^{\nu}\phi \star \partial^{\mu}\phi \right) - \frac{1}{2} \eta^{\mu\nu} \left(\partial_{\rho}\phi \star \partial^{\rho}\phi - m^2\phi \star \phi \right)$$

Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

 Consider a Schwarzschild black hole described by a massive scalar field in noncommutative QFT:

$$T_{NC}^{\mu\nu}(x) = \frac{1}{2} \left(\partial^{\mu}\phi \star \partial^{\nu}\phi + \partial^{\nu}\phi \star \partial^{\mu}\phi \right) - \frac{1}{2} \eta^{\mu\nu} \left(\partial_{\rho}\phi \star \partial^{\rho}\phi - m^2\phi \star \phi \right)$$

• Neglect corrections to the laws of GR, since noncommutative gravity appears at $\mathcal{O}(|\theta|^2)$ and is model-dependent.

[X. Calmet, A. Kobakhidze, Phys. Rev. D74 (2006) 047702] [P. Mukherjee, A. Saha, Phys. Rev. D74 (2006) 027702]

Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

$$T_{NC}^{\mu\nu}(\mathbf{x},t) \approx T_{GR}^{\mu\nu}(\mathbf{x},t) + \frac{m^3 G^2}{8c^4} v^{\mu} v^{\nu} \Theta^{kl} \partial_k \partial_l \delta^3(\mathbf{x} - \mathbf{y}(t))$$

with

$$\Theta^{kl} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + 2 \frac{v_p}{c} \frac{\theta^{0k}\theta^{pl}}{l_p^3 t_p} + \frac{v_p v_q}{c^2} \frac{\theta^{kp}\theta^{lq}}{l_p^4} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + \mathcal{O}(1)$$

Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

$$T_{NC}^{\mu\nu}(\mathbf{x},t) \approx T_{GR}^{\mu\nu}(\mathbf{x},t) + \frac{m^3 G^2}{8c^4} v^{\mu} v^{\nu} \Theta^{kl} \partial_k \partial_l \delta^3(\mathbf{x} - \mathbf{y}(t))$$

with

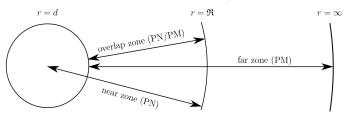
$$\Theta^{kl} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + 2 \frac{v_p}{c} \frac{\theta^{0k}\theta^{pl}}{l_p^3 t_p} + \frac{v_p v_q}{c^2} \frac{\theta^{kp}\theta^{lq}}{l_p^4} = \frac{\theta^{0k}\theta^{0l}}{l_p^2 t_p^2} + \mathcal{O}(1)$$

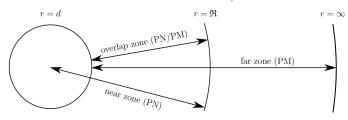
Binary black hole EMT with 2PN noncommutative corrections:

$$T^{\mu\nu}(\mathbf{x},t) = m_1 \gamma_1 v_1^{\mu} v_1^{\nu} \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + \frac{m_1^3 G^2 \Lambda^2}{8c^4} v_1^{\mu} v_1^{\nu} \theta^k \theta^l \partial_k \partial_l \delta^3(\mathbf{x} - \mathbf{y}_1(t)) + 1 \leftrightarrow 2$$

where

$$\Lambda \theta^i = \frac{\theta^{0i}}{l_P t_P}.$$

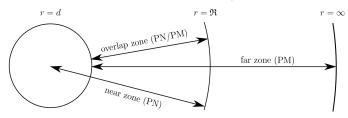




Correction to *E*:

$$\nabla_{\nu}T^{\mu\nu}=0$$

o
$$E_{NC} = \frac{G^3 M^3 \mu (1-2\nu) \Lambda^2}{8c^4 r^3} + \mathcal{O}(5)$$



Correction to E:

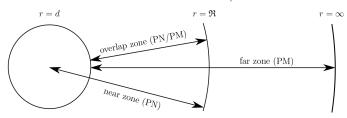
$$\nabla_{\nu} T^{\mu\nu} = 0$$

•
$$E_{NC} = \frac{G^3 M^3 \mu (1-2\nu) \Lambda^2}{8c^4 r^3} + \mathcal{O}(5)$$

Correction to \mathcal{F} :

$$\circ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

$$\circ \ {\cal F}_{NC} = \tfrac{G}{c^5} \left(- \tfrac{36}{5} \tfrac{G^5 M^7}{c^4 r^7} \nu^2 (1 - 2 \nu) \Lambda^2 + {\cal O}(5) \right)$$



Correction to *E*:

$$\nabla_{\nu} T^{\mu\nu} = 0$$

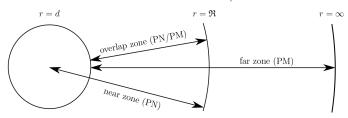
•
$$E_{NC} = \frac{G^3 M^3 \mu (1 - 2\nu) \Lambda^2}{8c^4 r^3} + \mathcal{O}(5)$$

Correction to \mathcal{F} :

$$\circ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

$$\circ E_{NC} = \frac{G^3 M^3 \mu (1 - 2\nu) \Lambda^2}{8c^4 r^3} + \mathcal{O}(5) \qquad \circ \mathcal{F}_{NC} = \frac{G}{c^5} \left(-\frac{36}{5} \frac{G^5 M^7}{c^4 r^7} \nu^2 (1 - 2\nu) \Lambda^2 + \mathcal{O}(5) \right)$$

$$\frac{d(E + \mathbf{E}_{NC})}{dt} = -\mathcal{F} - \mathcal{F}_{NC}$$



 $\nabla_{\nu} T^{\mu\nu} = 0$

Correction to
$$E$$
:

•
$$E_{NC} = \frac{G^3 M^3 \mu (1 - 2\nu) \Lambda^2}{8c^4 r^3} + \mathcal{O}(5)$$

$$\circ \ \mathcal{F} = \frac{G}{c^5} \left(\frac{1}{5} I_{ij}^{(3)} I_{ij}^{(3)} + \mathcal{O}(2) \right)$$

$$\circ E_{NC} = \frac{G^3 M^3 \mu (1 - 2\nu) \Lambda^2}{8c^4 r^3} + \mathcal{O}(5) \qquad \circ \mathcal{F}_{NC} = \frac{G}{c^5} \left(-\frac{36}{5} \frac{G^5 M^7}{c^4 r^7} \nu^2 (1 - 2\nu) \Lambda^2 + \mathcal{O}(5) \right)$$

$$\frac{d(E + E_{NC})}{dt} = -\mathcal{F} - \mathcal{F}_{NC}$$

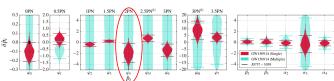
Lowest-order correction to the orbital phase:

$$\varphi_4 = \frac{15293365}{508032} + \frac{27145}{504}\nu + \frac{3085}{72}\nu^2 + \frac{5}{4}(1 - 2\nu)\Lambda^2$$

Constraint on the scale of noncommutativity

Noncommutativity vs. GW150914

waveform regime			median		GR quantile		$\log_{10} B_{\text{model}}^{\text{GR}}$	
	parameter	f-dependence	single	multiple	single	multiple	single	multiple
early-inspiral regime	$\delta \hat{\varphi}_0$	$f^{-5/3}$	$-0.1^{+0.1}_{-0.1}$	1.3+3.0	0.94	0.30	1.9 ± 0.2	
	$\delta \hat{\varphi}_1$	$f^{-4/3}$	$0.3^{+0.4}_{-0.4}$	$-0.5^{+0.6}_{-0.6}$	0.16	0.93	1.6 ± 0.2	
	$\delta \hat{\varphi}_2$	f^{-1}	$-0.4^{+0.3}_{-0.4}$	$-1.6^{+18.8}_{-16.6}$	0.96	0.56	1.2 ± 0.2	
	$\delta \hat{\varphi}_3$	$f^{-2/3}$	$0.2^{+0.2}_{-0.2}$	$2.0^{+13.4}_{-13.9}$	0.02	0.42	1.2 ± 0.2	3.7 ± 0.6
	$\delta \hat{\varphi}_4$	$f^{-1/3}$	$-1.9^{+1.6}_{-1.7}$	$-1.9^{+19.3}_{-16.4}$	0.98	0.56	0.3 ± 0.2	
	$\delta \hat{\varphi}_{5l}$	log(f)	$0.8^{+0.5}_{-0.6}$	$-1.4^{+18.6}_{-16.9}$	0.01	0.55	0.7 ± 0.4	
	$\delta \hat{\varphi}_6$	$f^{1/3}$	$-1.4^{+1.1}_{-1.1}$	$1.2^{+16.8}_{-18.9}$	0.99	0.47	0.4 ± 0.2	
	$\delta \hat{\varphi}_{6l}$	$f^{1/3} \log(f)$	$8.9^{+6.8}_{-6.8}$	$-1.9^{+19.1}_{-16.1}$	0.02	0.57	-0.3 ± 0.2	
	$\delta \hat{\varphi}_7$	$f^{2/3}$	$3.8^{+2.9}_{-2.9}$	$3.2^{+15.1}_{-19.2}$	0.02	0.41	-0.0 ± 0.2	
intermediate regime	$\delta \hat{\beta}_2$	$\log f$	$0.1^{+0.4}_{-0.3}$	$0.2^{+0.6}_{-0.5}$	0.24	0.28	1.4 ± 0.2	2.3 ± 0.2
	$\delta \hat{\beta}_3$	f^{-3}	$0.1^{+0.6}_{-0.3}$	$-0.0^{+0.8}_{-0.7}$	0.31	0.56	1.2 ± 0.4	
merger-ringdown regime	$\delta \hat{\alpha}_2$	f^{-1}	$-0.1^{+0.4}_{-0.4}$	$0.0^{+1.0}_{-1.2}$	0.68	0.50	1.2 ± 0.2	2.1 ± 0.4
	$\delta \hat{\alpha}_3$	$f^{3/4}$	$-0.3^{+1.9}_{-1.5}$	$0.0^{+4.4}_{-4.4}$	0.60	0.51	0.7 ± 0.2	
	$\delta \hat{\alpha}_4$	$tan^{-1}(af + b)$	$-0.1^{+0.5}_{-0.5}$	$-0.1^{+1.1}_{-1.0}$	0.68	0.62	1.1 ± 0.2	



$$\delta \varphi_4^{NC} = \frac{\varphi_4^{NC}}{\varphi_4^{GR}} = \frac{1270080 (1 - 2\nu)}{4353552 \nu^2 + 5472432 \nu + 3058673} \Lambda^2$$

$$|\delta \varphi_4^{NC}| \lesssim 20 \Rightarrow \sqrt{\Lambda} \lesssim 3.5$$

o Observation of the collapse of a binary black hole by LIGO.

o Observation of the collapse of a binary black hole by LIGO.

GW waveform consistent with GR.

- Observation of the collapse of a binary black hole by LIGO.
- GW waveform consistent with GR.
- Derivation of the lowest-order (2PN) noncommutative correction to the GW waveform.

- Observation of the collapse of a binary black hole by LIGO.
- GW waveform consistent with GR.
- Derivation of the lowest-order (2PN) noncommutative correction to the GW waveform.
- Constraint on the scale of noncommutativity to around the Planck scale:

$$|\theta^{0i}| \lesssim 12 \cdot l_P t_P$$

 ~ 15 orders of magnitude improvement