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GW150914

o Inspiral, merger and ring-down of a binary black hole observed by LIGO.

o Masses of 3673 M, and 297 ] M.

o Frequency ranging from 35 to 250 Hz and velocity up to ~ 0.5c.
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An opportunity to test GR and its extensions

Einstein Field Equations (EFE) from General Relativity predicts the waveform
of such GWs :
o post-Newtonian formalism provides an analytical expansion in % (valid
only during the inspiralling)
o numerical Relativity provides accurate simulations, including the merger
and the ring-down
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GW150914 data are in good agreement with GR predictions
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= opportunity to test various models beyond GR.
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Our objective: constrain the scale of noncommutative space-time.



The post-Newtonian formalism

L. Blanchet, Living Rev. Rel. 17 (2014)
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Definitions and notations

The full EFE in the harmonic gauge (9,h*" = 0) can be written as
Opep — 167G _ap
A

with the gravitational-field amplitude h and the matter-gravitational source T:

c
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Definitions and notations

The full EFE in the harmonic gauge (9,h*" = 0) can be written as
Opep — 167G _ap
c4

with the gravitational-field amplitude h and the matter-gravitational source T:

4
[ ootB P af ap ¢ ap
h v —8¢ 7P, T |g| T + 167TGA .

For a source term with characteristic velocity v, the post-Newtonian formalism
(PN) solves the EFE as an expansion in powers of . As a convention, a term
of order 1 is called a 5PN term and written as

On)=0 (ZC}—:)
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How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the
overlap zone:

far zone (PM)
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How to solve the full EFE?

Iterative expansions in the near and far zones and matching strategy in the
overlap zone:
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Matter source

Consider a binary system of two black holes of masses m1 and my. It is usually
approximated by two point-like particles:

T (x,t) = ——= D} (0} (1) P(x = y1(t)) +1 2
171
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Matter source

Consider a binary system of two black holes of masses m1 and my. It is usually

approximated by two point-like particles:
v?(t)v'{(t) Bx—yi(t)+12

m
TH (x,t) = ——— L
P o0
4
88por —2
Useful parametrization:
> total mass: M =mq +mp
o reduced mass: n="r
mym
v = % = 1\1/122

> symmetric mass ratio:



The balance equation

far zone (PM)
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The balance equation

far zone (PM)

Equations of motion - energy E:
o V, T =0
o a = —%"12 +0(2)

L G 4 0(2) +1 452

Y
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The balance equation

far zone (PM)

Y

Equations of motion - energy E: Radiated flux F:

o VuTH =0 G (1100
o F=3 (sl ;" +0
° 31:_%12"12'1'0(2) 5<5 i ())

o F=§ (2G4 1 02))

o

o E="0_Gmm 4 0(2) 162




The balance equation

r =00
far zone (PM) -
Equations of motion - energy E: Radiated flux F:
° VI =0 G (1,0,
© a *—%"124-0( 2) vr=a <5I’] if +00@ ))
o F=G 32G3M5v2+0()
o E= " CR L0(2) +1 62 8 (=5 2)

Conservation of energy implies the balance equation and the orbital phase:

dE :
C=-F = ¢:/Q(t)dt



State-of-the-art computations

For data analysis, consider the waveform in frequency space:

h(f) = A(f) ).
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State-of-the-art computations
For data analysis, consider the waveform in frequency space:

h(f) = A(f) ).

The phase ¢(f) (Fourier transform of ¢(t)) has been calculated to 3.5PN

accuracy:

T 3 L TMGf (-5)/3
Lo (M)

1P(f):2”ftc_4’c_z+@j:04’j 3
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State-of-the-art computations

For data analysis, consider the waveform in frequency space:
h(f) = A(f) eV,

The phase ¢(f) (Fourier transform of ¢(t)) has been calculated to 3.5PN

accuracy:

_ T 3 L TMGf (-5)/3
00 =g T4 3 gy (THOTYO

j=0
where the phase coefficients are
p = 1
1 - 2715 55
2 = 7 TGV
3 = —lér
15293365 27145 3085 ,,2
tSp vt

Ps = 508032

[T. Damour, B. lyer and B. Sathyaprakash, Phys. Rev. D 63 (2001) 044023]

[G. Faye, S. Marsat, L. Blanchet, B. Iyer, Class. Quantum Grav. 29 (2012) 175004]
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GR vs. GW150914
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m,x10(M)

Pictorial representation on simulated data

Model=RWF; qm=0.1; DL=BGpc; ET-B; F|°W=1Hz;
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[C. Mishra, K. Arun, B. lyer, B. Sathyaprakash, Phys. Rev. D 82 (2010) 064010]
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Bayesian analysis from GW150914

waveform regime median GR quantile log,o BSR
parameter f—dependence single multiple single multiple single  multiple
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[LIGO/Virgo Coll., Phys. Rev. Lett. 116 (2016) 221101]
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Noncommutative corrections to the waveform

A. Kobakhidze, CL, A. Manning, PRD 94 (2016) 064033
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Noncommutative space-time

NC space-time arises in a number of contexts:
o Originally proposed by Heisenberg as an effective UV cutoff.

> Snyder formalized the idea [phys. Rev. 71 (1047) 38).

o Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

o Low—energy limit of String theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 ].
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We focus on the canonical algebra of coordinates:

. 1
[, 2] = 0" AxrAY > ||
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o Originally proposed by Heisenberg as an effective UV cutoff.
o Snyder formalized the idea [phys. Rev. 71 (1947) 38).

o Noncommutative geometry [A. Connes, Inst. Hautes Etudes Sci. Publ. Math. 62 (1985) 257].

o

Low—energy limit of String theory [N. Seiberg and E.Witten, JHEP 9909 (1999) 032 |.
We focus on the canonical algebra of coordinates:

7o) N H v v 1 v

[F,2V] = io¥ AxFAxY > 5\9” |

Previous constraints on noncommutative scale at inverse ~ TeV.

[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]
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o Low-energy limit of string theory [n. seiberg and E.witten, JHEP 9909 (1999) 032 ].
We focus on the canonical algebra of coordinates:
PNTRNT UV v 1 v
[F,2V] = io¥ AxFAxY > 5\9” |

Previous constraints on noncommutative scale at inverse ~ TeV.

[S. Carroll et al., Phys. Rev. Lett.87 (2001) 141601] [X. Calmet, Eur. Phys. J. C41 (2005) 269]

Noncommutative QFT - fields product replaced by Moyal product:

_ SN L gt gup
F) () = Fg0) + 1 ((5) 0P 0P By 30, ()9, 3p, (1)
n=1 °
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Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.
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o Consider a Schwarzschild black hole described by a massive scalar field in
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Noncommutative effects on GWs

Expect both modifications on the matter source and on the EFE.

o Consider a Schwarzschild black hole described by a massive scalar field in
noncommutative QFT:

T (x) = % (9P %'+ 3" p % ) — %171” (9o 09— mPgx )

o Neglect corrections to the laws of GR, since noncommutative gravity
appears at O(]6|?) and is model-dependent.

[X. Calmet, A. Kobakhidze, Phys. Rev. D74 (2006) 047702] [P. Mukherjee, A. Saha, Phys. Rev. D74 (2006) 027702 ]
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Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

v Hv m3G? 1oV @kl 3
The(x t) = Tep(x, t) + gt U0 00,0, 8% (x —y(t))

with
g0kgo! vp gOkgp! Vg okrglq gOkgo!

ok — =
22 3 2 4 212
I5ts c lptp c ZP I5t5

+0(1)
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Energy-momentum tensor in noncommutative space-time

After quantising and keeping leading-order corrections of the Moyal product:

32

m>G
The(x ) = ThR (x, 1) +

e 000199, 6% (x — y (1))

with
@kl _ @Ok gO! vp gOkgp! Vg okrglq @Ok gO!
-~ 22 B3 2 i T e
I5ts c Iptp c Ip I5t5

+0()

Binary black hole EMT with 2PN noncommutative corrections:

v H_ovs3 m%G2A2]4vkl 3
TH(x, t) = myy107076° (x —y1(t)) + o v, 01060'0;0; 0 (x —y1 (1)) +1 ¢ 2
where )
901

AG = )
Iptp
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The modified balance equation

r=d r=5R r =00

far zone (PM)

Y
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The modified balance equation

r=d r==R r =00

far zone (PM)

\

Correction to E:

o V, T =0

G3M3u(1-2v)A?
o Enc = SMECIN 4 0(5)
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The modified balance equation
r=d r=%"R r=00

far zone (PM)

IJ(?&I' ZOH(} (P,V)
Correction to E: Correction to F: |
° VT =0 O"7--:%5(51/ if +O( ))
G M>u(1-2v)A
* Enc = SHEEREE L06B) Fne = § (-2 EH2(1-2)A2+ 0(5))
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The modified balance equation

r=d r=%R r=o00

far zone (PM)

\

Correction to E: Correction to F:
o V, T =0 Of:ﬁ%(51/ p +O( ))
G M>u(1-2v)A
o Enc T“!‘O( ) o Fnc = C%( 356 G;%F ( 2V)A2+O( ))
d(E+ Enc)
S e Iy A
at F = Fnc
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The modified balance equation

T =00
far zone (PM) -
Correction to E- Correction to F:
5 V,TH =0 a]—':c%(% 3) {% +0(2 ))
G3MPu(1-2v)A?
CEve=""gam o tO00) o Fye=§ (- %G;i‘? 2(1-20)A+ 0(5))

d(E+ Enc)

N TNV — Fre
dr F=7Ine

Lowest-order correction to the orbital phase:

15293365 n 271451/ 3085 24 5, L A2
508032 504 72 '

Py =
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Constraint on the scale of noncommutativity

1PN G4
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Noncommutativity vs. GW150914

waveform regime ‘median GR quantile log,o BN,
parameter f-dependence single multiple single multiple single  multiple
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Conclusion

o Observation of the collapse of a binary black hole by LIGO.
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Conclusion

o Observation of the collapse of a binary black hole by LIGO.

o GW waveform consistent with GR.

o Derivation of the lowest-order (2PN) noncommutative correction to the
GW waveform.

o Constraint on the scale of noncommutativity to around the Planck scale:

6% < 12-Iptp

~ 15 orders of magnitude improvement



