Self-consistent Dark Matter Simplified Models with an s-channel scalar mediator 1612.03475

G. Busoni

CoEPP Workshop 2017

23 Feb 2017

G. Busoni (Melbourne U.) Self-consistent Dark Matter Simplified Models

23 Feb 2017 1 / 25

Introduction

- Generation I model
- Assumptions and Implications
- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

Introduction

Generation I model

- Assumptions and Implications
- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

Just one additional scalar coupled with generic couplings $g_q y_i, y_\chi$

$$\mathcal{L}_{new} = \frac{1}{2} \partial^{\mu} S \partial_{\mu} S - \frac{1}{2} M^2 S^2 - \frac{g_q}{\sqrt{2}} S \sum_q y_i \bar{q}_i q_i - y_{DM} S \bar{\chi} \chi$$

The interaction term of S with quarks is not gauge invariant, as

$$\bar{q}_i q_i = \bar{q}_L^i q_R^i + \bar{q}_R^i q_L^i$$

is not SM singlet

→ ∃ →

Introduction

Generation I model

Assumptions and Implications

- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

Assumptions

- S is a scalar, and is a portal to DM
- χ is a SM singlet
- S is exchanged in the s-channel
- Structure of SM yukawa lagrangian is not modified
- There is only one Higgs doublet

Implications

- S is a SM singlet
- *S* has to mix with SM higgs, as a quark scalar bilinear can only couple to a particle that has the same quantum numbers as an Higgs doublet

• • • • • • • • • • • •

Introduction

- Generation I model
- Assumptions and Implications

• A possible Gauge invariant version

Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

Summary

A Gauge invariant version of this model could be obtained by the following lagrangian (Z_2 on S)

$$\mathcal{L}_{new} = \frac{1}{2} \partial^{\mu} S \partial_{\mu} S + \frac{1}{2} M_{SS}^2 S^2 - \frac{1}{2} \lambda_{HS} \phi^{\dagger} \phi S^2 - \frac{1}{4!} \lambda_S S^4 - y_{DM} S \bar{\chi} \chi$$

EW symmetry breaking mixes the SM higgs with the new scalar

$$\begin{pmatrix} h \\ s \end{pmatrix} = \begin{pmatrix} \cos \epsilon & -\sin \epsilon \\ \sin \epsilon & \cos \epsilon \end{pmatrix} \begin{pmatrix} \phi^0 - \langle \phi^0 \rangle \\ S - \langle S \rangle \end{pmatrix}$$

The mixing angle ϵ has to be small, so that higgs and EW phenomenology does not get affected much (all SM signal strengths involving the higgs get a $\cos^2 \epsilon$ factor)

Consequently, $\cos \epsilon \sim 1$, $\sin \epsilon < 0.4$

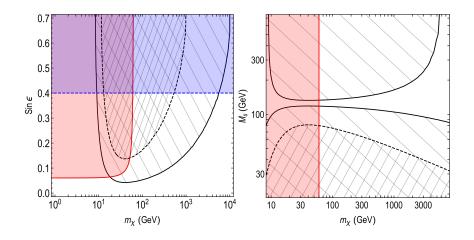
The h - s mixing gives s a coupling to Standard Model fermions:

$$\mathcal{L}_{int} = -y_i \bar{Q}_L^i u_R^i \widetilde{\phi} = -m_i \bar{u}_L^i u_R^i (1 + \cos \epsilon \frac{h}{v} - \sin \epsilon \frac{s}{v})$$

The coupling of s to quarks is indeed proportional to yukawas

$$g_q \equiv -\sin\epsilon$$

Also the higgs now couples to DM:


$$-y_{DM}S\bar{\chi}\chi \rightarrow -y_{DM}\left(\sin\epsilon h + \cos\epsilon s\right)\bar{\chi}\chi$$

Both mediators therefore contribute to all cross sections:

$$\sigma_{\bar{q}q \to \bar{\chi}\chi + X} \propto (y_{\chi}y_q \sin \epsilon \cos \epsilon)^2 \left(\frac{1}{s - M_h^2} - \frac{1}{s - M_s^2}\right)^2$$

The mixing requires also the Higgs to couple to DM, and the product of the couplings for h and s is equal and opposite

Introduction Direct Detection Constraints

Introduction

- Generation I model
- Assumptions and Implications
- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

- $g_q = \sin \epsilon \le 1$ means low to moderate sensitivity
- Higgs couples to DM
- Stringent DD constraints on ϵ , even $M_s \to \infty$ (but not for $M_s \sim M_h$)
- DD blind window at $M_s \sim M_h$ [1509.05771]
- Too weak signal at LHC unless at least one of the 2 mediators can go on shell
- Bounds on h invisible give stringent constraints for $m_\chi \lesssim M_h/2$
- Coupling to leptons arises as well!
- VBF operator arises

$$L_{int,VBF} = -\sin\epsilon \left(2\frac{M_W^2}{v}W_{\mu}^+W^{-\mu} + \frac{M_z^2}{v}Z_{\mu}Z^{\mu}\right)s$$

Introduction

- Generation I model
- Assumptions and Implications
- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

- Conclusions of the previous slides are quite general
 - A more complex scalar sector would still lead to similar conclusions
- To get more freedom with couplings to quarks, the only way is to add an additional Higgs doublet
- New Lagrangian will contain the singlet *S* as well, for a total of 3 scalars

$$\begin{split} V(\Phi_1, \Phi_2, S) &= M_{11}^2 \Phi_1^{\dagger} \Phi_1 + M_{22}^2 \Phi_2^{\dagger} \Phi_2 + (M_{12}^2 \Phi_2^{\dagger} \Phi_1 + h.c.) \\ &+ \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_2^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \frac{1}{2} \left(\lambda_5 (\Phi_2^{\dagger} \Phi_1)^2 + h.c. \right), \\ &+ \frac{1}{2} M_{SS}^2 S^2 + \frac{1}{3} \mu_S S^3 + \frac{1}{4} \lambda_S S^4 \\ &+ \frac{\lambda_{11S}}{2} (\Phi_1^{\dagger} \Phi_1) S^2 + \frac{\lambda_{22S}}{2} (\Phi_2^{\dagger} \Phi_2) S^2 + \frac{1}{2} (\lambda_{12S} \Phi_2^{\dagger} \Phi_1 S^2 + h.c.) \end{split}$$

• The 3 scalars will in general mix with arbitrary mixing angles

- There is always a region of the parameter space where one can decouple the first doublet and make it SM-like $\cos(\beta \alpha) = 0$
- This region may rise up naturally in presence of some symmetries of the full UV model
- In that case *S* mixes only with the scalar of the second doublet, and there is no constraints on the mixing angle
- SM phenomenology doesn't get affected in this limit, and no VBF operator arises

< ロ > < 同 > < 回 > < 回 >

Going Beyond: 2HDM Natural Alignment

- In 2HDM, natural alignment arises in presence of the symmetry $\lambda_1=\lambda_2=\frac{1}{2}\left(\lambda_3+\lambda_4+\lambda_5\right)$
- Under such symmetry, rotating the doublets of an angle β leave the couplings $\lambda_{1,\dots,5}$ invariant
- Rotating in the higgs basis, where $\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ v \\ \sqrt{2} \end{pmatrix}$ and

$$\langle \Phi_2
angle = \left(egin{array}{c} 0 \\ 0 \end{array}
ight)$$
 one gets the mass matrix

$$M^{\rho} = \begin{pmatrix} M^{\rho}_{hh} & 0 & M^{\rho}_{hS} \\ 0 & M^{\rho}_{HH} & M^{\rho}_{HS} \\ M^{\rho}_{hS} & M^{\rho}_{HS} & M^{\rho}_{SS} \end{pmatrix}$$
(1)

• To avoid the SM higgs to mix with the singlet state, one needs to require that in the new basis $\lambda_{11S} = 0$

Introduction

- Generation I model
- Assumptions and Implications
- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC

3 Conclusions

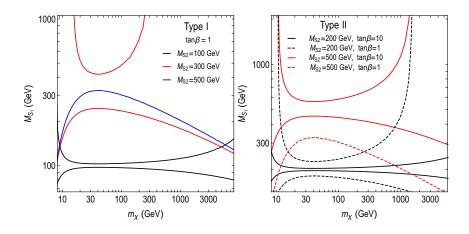
Going Beyond: 2HDM Type I and II

In the alignment limit $(\beta - \alpha = \pi/2)$, ones gets (neglecting scalar interactions))

$$L = L_{SM} + \frac{1}{2} \partial^{\mu} S_i \partial_{\mu} S_i - \frac{1}{2} M_i^2 S_i^2 (i = 1, 2) + \bar{\chi} (i \partial - m_{\chi}) \chi$$
$$- y_{DM} (\cos \theta S_2 + \sin \theta S_1) \bar{\chi} \chi - \frac{y_f \xi^f}{\sqrt{2}} (\cos \theta S_1 - \sin \theta S_2) \bar{f} f$$

	Type I	Type II	
ξ^u	\coteta	$\cot eta$	
ξ^d	\coteta	$-\tan\beta$	
ξ^{ℓ}	$\cot eta$	$-\tan\beta$	

- Type II can allow an enhanced coupling to down quarks, for large values of $\tan\beta$
- u, d quarks have same-sign couplings in Type I and opposite sign couplings in Type II


G. Busoni (Melbourne U.)

Self-consistent Dark Matter Simplified Models

23 Feb 2017 18 / 25

Going Beyond: 2HDM

Direct Detection Constraints

Not only interference between the 2 mediators, but also interference between different flavours (Type II)

G. Busoni (Melbourne U.)

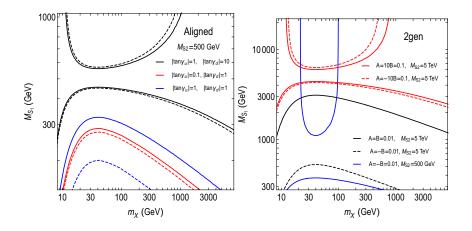
Self-consistent Dark Matter Simplified Models

Introduction

- Generation I model
- Assumptions and Implications
- A possible Gauge invariant version
- Consequences of Gauge Invariance

Going Beyond: 2HDM

- Adding a second doublet
- DD constraints: Type I and II
- DD constraints: Type III and FCNC


3 Conclusions

- The most general case is Type III
 - In this case, FCNC generally appear at tree level
- To get rid of them at tree level, one needs flavour-diagonal couplings (in mass eigenstates basis)
- In absence of symmetry, loop level FCNC will appear
- Examples of Yukawa patterns that are "protected" against loop level FNCN:
 - Aligned yukawas: $y_H^U = \tan \gamma_u y_h^U, y_H^D = \tan \gamma_d y_h^D, y_H^l = \tan \gamma_l y_h^l$
 - Coupling only to first 2 generations: $y_{H}^{u,c} = A, y_{H}^{d,s} = B, y_{H}^{b,t,l} = 0$

< ロ > < 同 > < 回 > < 回 >

Going Beyond: 2HDM

Direct Detection Constraints

Interference between flavours only happens for a certain ratio between the yukawa couplings

G. Busoni (Melbourne U.)

Self-consistent Dark Matter Simplified Models

DD constraints: Type III and FCNC

ConclusionsSummary

Model	Singlet	Type I	Type II	Type III
2 Mediators	Yes	Yes	Yes	Yes
$g_u = g_d$	Yes	Yes	No	No
$MAX \ g_q$	0.4	$\mathcal{O}(1)$	$\begin{array}{c} q_u < \mathcal{O}(1) \\ g_d < \mathcal{O}(\frac{m_t}{m_b}) \end{array}$	Pert. limit
VBF	Yes	No	No	No
SM constr.	Yes	No	No	No
Num. Par.	$4(+1\Gamma)$	6 (+2Γ)	6 (+2Γ)	up to $14(+2\Gamma)$
NFC	Yes	Yes	Yes	No
MFV	Yes	Yes	Yes	Yes
Lepton coupl. $\neq 0$	Yes	Yes	Yes	No
Flavour constr.	No	Moderate	Moderate	Depends

イロト イヨト イヨト イヨト

Conclusions

Summary

- Single scalar mediator
 - not gauge invariant wrt SM symmetries
- Singlet mixed with SM Higgs
 - Simple model, can be studied in details without "simplifying" it
 - Many constrains from SM physics
 - Negative interference in DD for degenerate mediators
- Singlet plus 2 Higgs doublets
 - Necessary to go beyond the above
 - Interesting case in the alignment limit
 - S mixes with 2nd Higgs, thus no Higgs mixing constraints
 - Negative interference in DD also from flavour interference
 - Flavour diagonal (*but not necessarily Yukawa suppressed*) couplings forbid tree-level FCNC
 - Arbitrary diagonal couplings allow large LHC signals
 - Large parameter space for Type III can be "simplified" with flavor constrains

< ロ > < 同 > < 回 > < 回 >