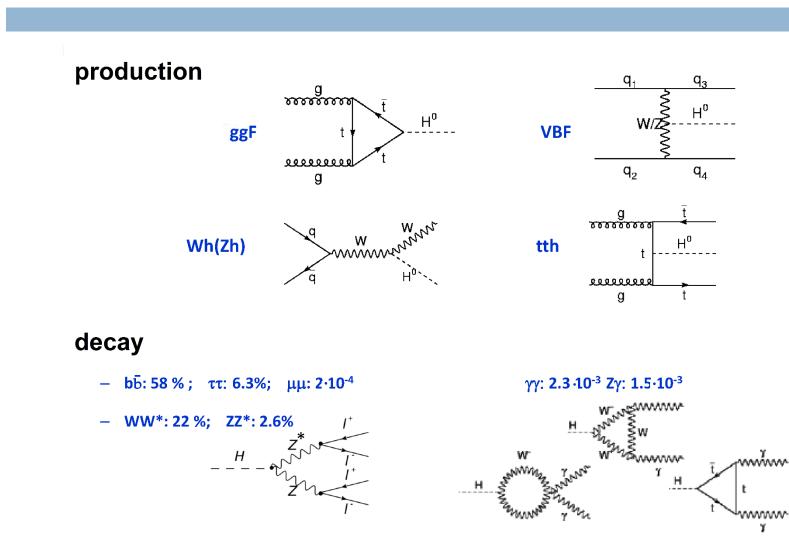
Higgs Measurements in ATLAS

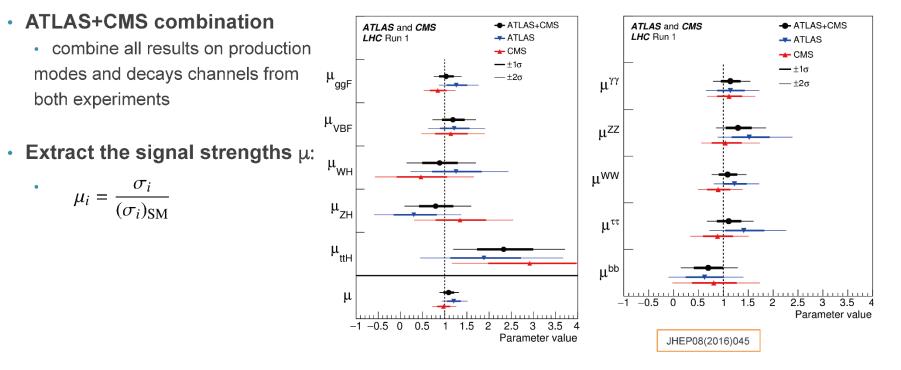
<u>Jin Wang</u> University of Sydney

1


2017/2/23 Thursday

CoEPP Workshop 2017 Adelaide

from Run 1 to Run 2


CoEPP Workshop 2017 Adelaide

Higgs Production and Decay

CoEPP Workshop 2017 Adelaide

Run 1 Higgs Coupling ATLAS+CMS Combination

• global signal strength: $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}$ (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig)

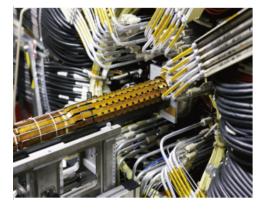
- VBF production: 5.40; ttH: 4.40 (2.00 expected)
- decay to ττ: 5.5σ; bb: 2.6σ.

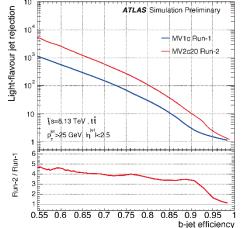
CoEPP Workshop 2017 Adelaide

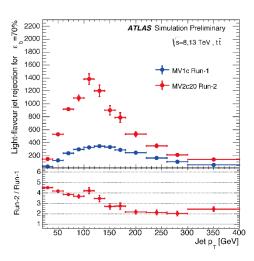
Other Run 1 Higgs Results

- Mass and width
 - Mass measured at the 2 per mil level: ATLAS-CMS mass measurement γγ/ZZ <u>Phys. Rev. Lett. 114, 191803</u> m_μ=125.09±0.21(stat.)±0.11(syst.) GeV
 - Indirect limits on its width of ~5 times the SM prediction
- Spin/CP
 - Spin-O, CP-even state strongly preferred
 - **ATLAS spin/CP measurements**
 - γγ/ZZ/WW: spin, CP <u>Eur. Phys. J. C 75 (2015) 476</u>
 - ττ VBF CP analysis <u>ArXiv_1602.04516</u>
- Kinematics
 - differential distributions
 - combined γγ/ZZ <u>Phys. Rev. Lett. 115 (2015) 091801</u>
 - WW (dec 2015) J. High Energy Phys. 08 (2016) 104

CoEPP Workshop 2017 Adelaide


Key Performance in Run 2


Inclusion of an additional layer (IBL) very close to the beam pipe (3.3 cm)


better track resolution and more robust pattern recognition

ATLAS-PHYS-PUB-2016-012

Very small uncertainty on the measurement of the physics objects

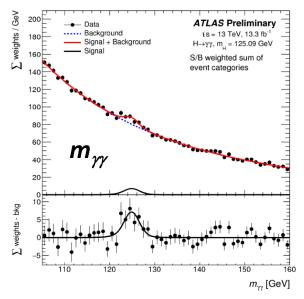
muon momentum scale to $\sim 0.1\%$, electron energy scale to $\sim 0.2\%$, jet energy scale to $\sim 1\%$


CoEPP Workshop 2017 Adelaide

ATLAS-PHYS-PUB-2016-015 ATLAS-PHYS-PUB-2015-036 EPJC 2016 (2016) 76:292 2017/2/23 Thursday

Key Performance in Run 2

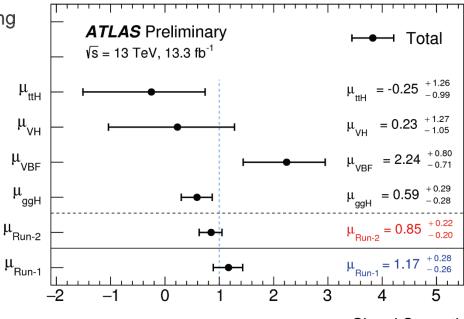
• Upgrades


- Trigger: Level 1, 75 kHz -> 100 kHz
- DAQ: event recording, 300 Hz -> 1 kHz
- Improved algorithms in track reconstruction, MissingET, electron, photons, flavour tagging etc..
- Very good data quality (91% efficiency) and large pile up (>20)

Bosonic Channels

CoEPP Workshop 2017 Adelaide

- Low branching ratio but with relatively large signal yields
 - simple signature with two isolated photons
 - high photon reconstruction and identification efficiency
- Excellent mass resolution
- Analysis similar to run-1
 - basic selection:
 - p_T (1) > 0.35 m(γγ), p_T(2) > 0.25 m(γγ)
- Fiducial cross-sections in 3 fiducial regions:
 - Inclusive, VBF-enhanced, single-lepton
- Differential cross-sections in 6 variables:
 - $p_T(\gamma\gamma), y(\gamma\gamma), \cos\theta^*, N(jets), p_T(jet1), \Delta\phi(j1,j2)$
- Cross-sections per production mode:
 - 13 categories targeting different production modes and optimal S/B
 - simplified template cross-sections (STXS), total cross-sections, and signal strengths

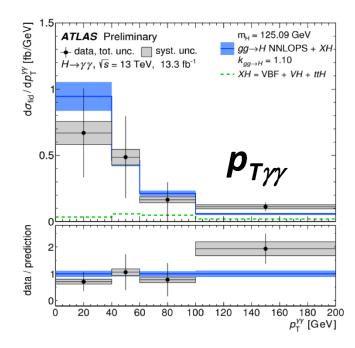

H->γγ Signal Strengths

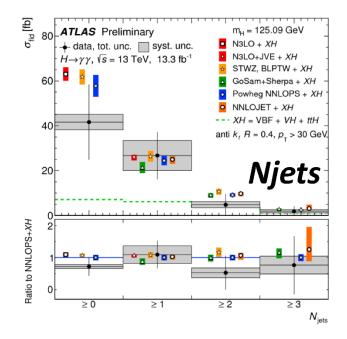
10

- Categories enriched in a given production mode:
 - ttH: jets, b-jets and leptons
 - VH: leptons and/or missing transverse energy, jets (V hadronic decays)
 - VBF: two well separated jets
 - ggF: untagged events
- Check consistency with SM by measuring the signal strengths $\mu\text{:}$

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{\rm SM}}$$

- all results compatible with SM
- accuracy already better than run1

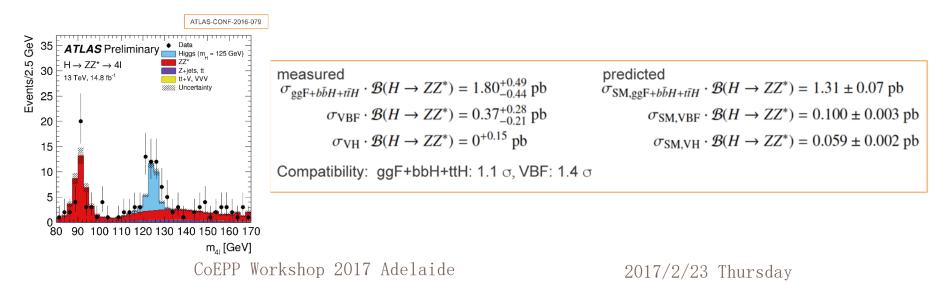

ATLAS-CONF-201-067


Signal Strength

CoEPP Workshop 2017 Adelaide

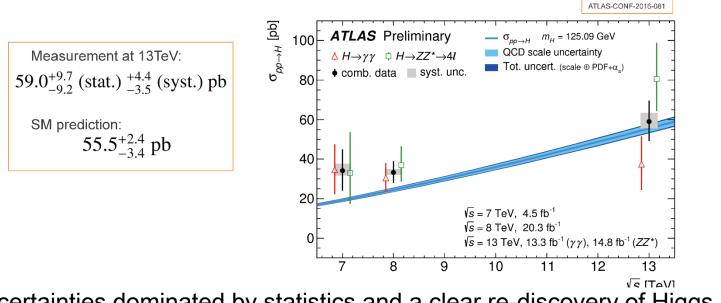
H->γγ Fiducial and Differential Cross Section Measurements

Fiducial region	Measured cross section (fb)	SM prediction (fb)	
Baseline	$43.2 \pm 14.9 (\text{stat.}) \pm 4.9 (\text{syst.})$	$62.8^{+3.4}_{-4.4}$	$[N^{3}LO + XH]$
VBF-enhanced	$4.0 \pm 1.4 (\mathrm{stat.}) \pm 0.7 (\mathrm{syst.})$	2.04 ± 0.13	[NNLOPS + XH]
single lepton	$1.5 \pm 0.8 (\mathrm{stat.}) \pm 0.2 (\mathrm{syst.})$	0.56 ± 0.03	[NNLOPS + XH]



CoEPP Workshop 2017 Adelaide

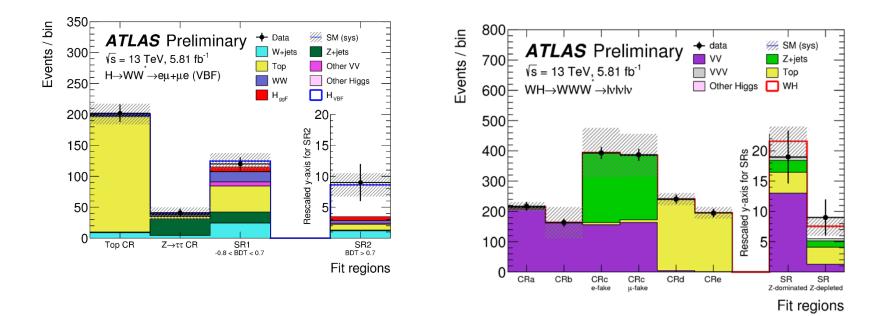
 $H -> ZZ^* -> 4]$


- Analysis:
 - select two pairs of isolated electrons/muons 4e, 4μ, 2e2μ, 2μ2e
 - IBL helps reducing conversions and heavy flavour contamination
 - require one on-shell Z
- Background dominated by ZZ continuum, Z+X, ttbar
 - BDT MVA to distinguish the signal from the irreducible SM ZZ background
 - reducible background like Z+jets, tt are estimated using data driven techniques

H-> $\gamma\gamma$ and H->ZZ*->4l Combination

• Total cross-section extrapolated from fiducial cross section

- inclusive gg and 4 leptons samples
- assume SM branching ratios and acceptances
- compare to theory prediction at N3LO



 Uncertainties dominated by statistics and a clear re-discovery of Higgs in Run 2

CoEPP Workshop 2017 Adelaide

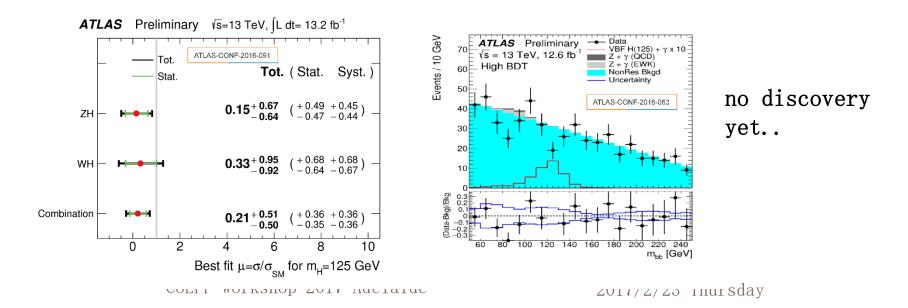
$\mathrm{H} \to \mathrm{WW}$

- 14
- ATLAS-CONF-2016-112, 5.8 fb-1 13TeV data
- VBF and WH production channel
 - measured μ _VBF = 1.7 +1.1 -0.9, μ _WH = 3.2 +4.4 4.2

CoEPP Workshop 2017 Adelaide

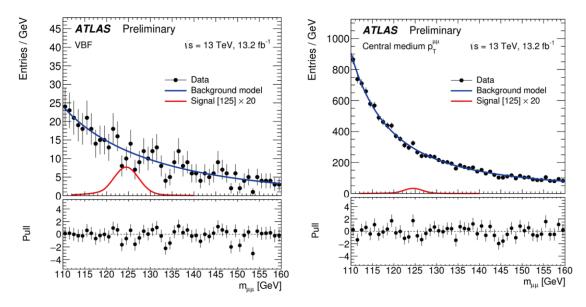
Fermionic Channels

CoEPP Workshop 2017 Adelaide


H->bb

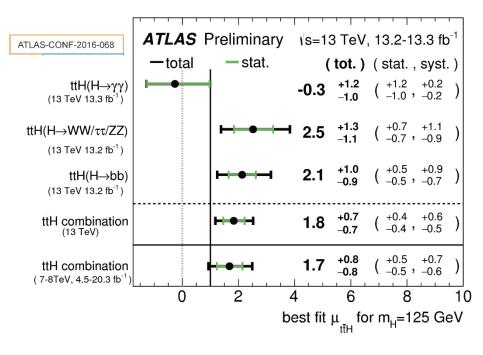
- Most significant channels for bb analysis: VH, ttH
 - impossible in ggF, very hard in VBF
 - run 1 result inconclusive VH(bb) : μ = 0.5 \pm 0.4 with 2.6 σ significance
- Run 2 VH analysis similar to run-1
 - 0-lepton (vvbb), ETmiss>150 GeV, "anti-QCD" cuts
 - 1-lepton (lvbb), 1 tight e/mu, ETmiss>30 GeV, pT(V) > 150 GeV
 - 2-leptons (IIbb), 2 loose e/mu, pT(V) >150 GeV
 - 2 b-jets
 - categories with 2, 3 (or ≥ 3) jets, with BDT discriminants explored in each signal region to enhance the sensitivity
- Main backgrounds:
 - Zbb, top, W+jets, multijets

CoEPP Workshop 2017 Adelaide


H->bb

- Alternative: VBF H->bb + high-pT γ
 - signature: 2 b-jets + 2 VBF jets + 1 central γ
 - efficient triggering using the high pT photon
 - gg-induced background suppressed
 - destructive interference between ISR and FSR quark induced backgrounds
- fit m(bb) distribution to get limits on μ <4.0 (expected 6.0 +2.3 -1.7)

Η->μμ

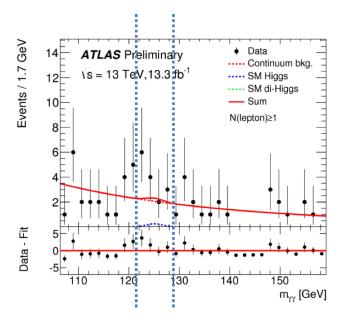

- Clean final state signature, difficult analysis due to the very small branching ratio in μμ
 - opposite sign di-muon events (pT > 25,15 GeV) selected + MET requirement
 - 7 analysis categories on pT ($\mu\mu$) and VBF-sensitive jet signatures
- Measured signal strength µ=-2.3±2.7
 - expected (observed) limits on μ are 4.4 (5.5) times SM
 - combined (Run1+Run2) observed (expected) limit on μ=3.5 (4.3) times SM
 - ATLAS-CONF-2016-041

ttH

19

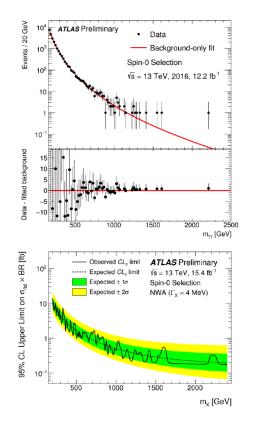
- ttH: direct measurement of Higgs-top Yukawa coupling
- Run-1: relatively large signal strength measured by ATLAS and CMS
- Run 2: tth cross-section increased by ~ 3.8 from 8 to 13 TeV (but also the main backgrounds)
 - ttH, H->multilepton analysis in ZZ*,WW* and ττ: ATLAS-CONF-2016-058
 - ttH, H->bb analysis with 1 or 2 leptons + jets: ATLAS-CONF-2016-080
 - ttH, H->γγ analysis with ttH-enriched categories: ATLAS-CONF-2016-067
- Run 2 combined results
 - Observed (exp) significance: 2.8σ (1.8σ)
 - better sensitivity than run 1: 1.5σ exp
 - μ is still large but results agree with SM predictions

CoEPP Workshop 2017 Adelaide


BSM Searches

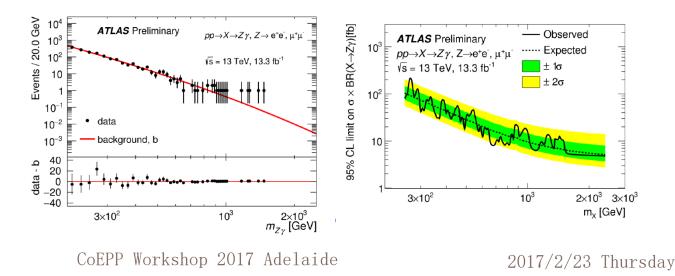
CoEPP Workshop 2017 Adelaide

Di-Higgs


• hh production

- small in the SM (h3, h4 couplings)
- resonant or non-resonant enhanced in BSM models
- Run 1 : bbbb, bbττ, bbγγ (small excess at 300GeV), WWγγ
- Run 2 results:
 - bbγγ with 3.2 fb-1 (no excess) <u>ATLAS-CONF-2016-004</u>
 - bbbb (13.3 fb-1) improved limits ATLAS-CONF-2016-049
 - WWγγ (lv qq) <u>ATLAS-CONF-2016-071</u>
 - signal: one-lepton; control: 0-lepton, m(γγ) in [105,160]
 - fit smooth background
 - number counting in signal m(γγ) in mh ± 2*1.7 GeV
 - resonant and non-resonant limits: slight excess (15 evts obs for 7.88 ±1.24 expected)

High Mass yy


- result with 2015 data published J. High Energy Phys. 09 (2016) 001
 - broad excess at 750 GeV in spin-0 and spin-2 analyses
 - maximum for M=750 GeV, with local significance 3.9/3.8 σ , global 2.1 σ
- 2015 (reprocessed) + 2016
 = 15.4 fb-1 <u>ATLAS-CONF-2016-059</u>
 - improved photon reconstruction and calibration
 - similar spin-0 analysis
- Results:
 - narrow width largest excess at 1.6 TeV: 2.4 σ local
 - variable width 10%: M=710GeV with 2.3 σ local

CoEPP Workshop 2017 Adelaide

High Mass Zy

- 2015 data: $Z(II)\gamma$ and $Z(qq)\gamma$ winter confs
 - submitted to PLB with combination arXiv:1607.06363
- 2016 data: update Z(II)γ , 13.3 fb-1, <u>ATLAS-CONF-2016-044</u>
 - similar to γγ scalar selection
 - background function fit, spurious signal...
 - no significant excess

Other Rare Decay and BSM Searches

- Higgs to $\varphi\gamma$, <u>Physics Review Letter 117, 111802</u>
- H/A->ttbar (8 TeV result): <u>ATLAS-CONF-2016-073</u>
- H/A->TT: <u>ATLAS-CONF-2016-085</u>
- Charged Higgs to tb and to TV: <u>ATLAS-CONF-2016-088</u>, <u>ATLAS-CONF-2016-088</u>
- $h(\gamma\gamma)$ + missing ET <u>ATLAS-CONF-2016-087</u>
- H(ZZ), 4 leptons and llvv <u>ATLAS-CONF-2016-079</u>
- H(WW) evμv <u>ATLAS-CONF-2016-074</u>
- H(V,V) Ilqq, Ivqq, vvqq <u>ATLAS-CONF-2016-082</u> <u>ATLAS-CONF-2016-062</u> <u>ATLAS-CONF-2016-083</u>

Conclusion

CoEPP Workshop 2017 Adelaide

Conclusion and Outlook

- Run 2: 13 TeV , many results with > 13 fb-1
 - SM h(125) clearly rediscovered
 - several searches already surpassed run-1 sensitivity
 - leading/significant contributions from CoEPP researchers in channels of $\gamma\gamma$, $Z\gamma$, $\tau\tau$, WW, high mass and BSM searches ...)
- For 2017, expect 45 fb-1 data with pileup up to 50, 13TeV
- Full Run 2 >120 fb-1 at 13 TeV
- We expect ~30 papers by Winter/Spring 2017
 - ~3-6 SM
 - ~22-24 Searches
- next round of most search papers based on full Run2