

The Recursive Jigsaw Reconstruction for SUSY, Higgs and Beyond

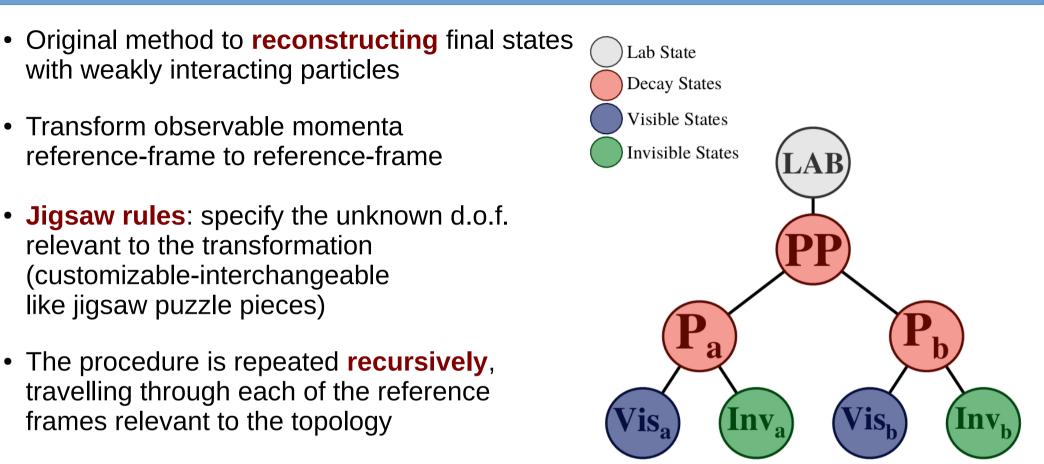
Marco Santoni CoEPP 2017

Supervisors: Paul Jackson and Martin White

and with Christopher Rogan

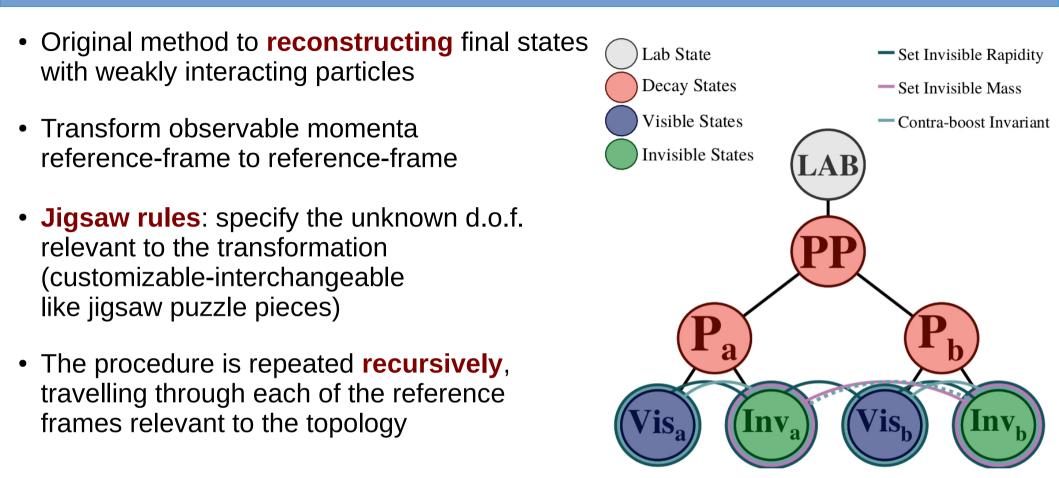
Outline

- What is the Recursive Jigsaw Reconstruction (RJR) technique?
- Example of study: squark and gluino pair production at LHC "Sparticles in motion: Analyzing compressed SUSY scenarios with a new method of event reconstruction" (arXiv:1607.08307 [hep-ph] – shortly in Phys. Rev. D)
- Other SUSY analyses and beyond


Marco Santoni

• Summary - Outlook

What is the Recursive Jigsaw Reconstruction technique?

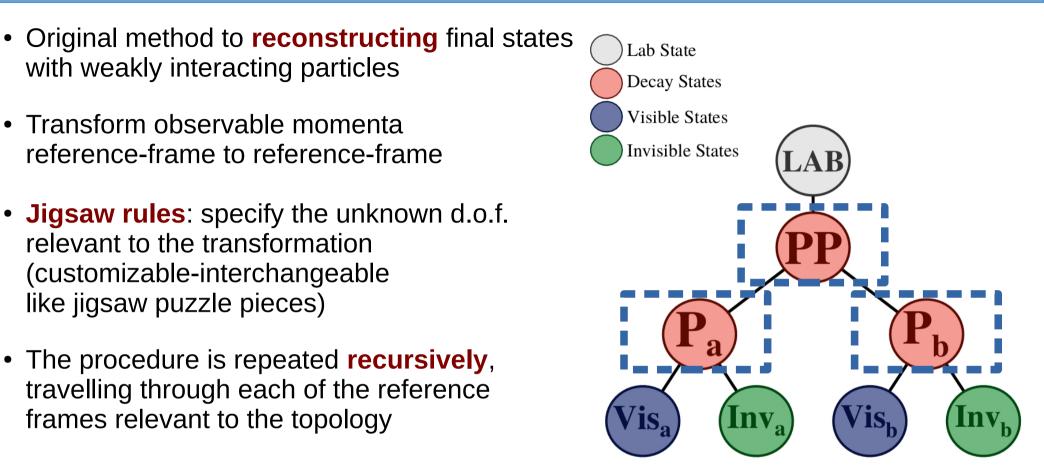

• Rather than obtaining one observable, get a complete basis of useful variables: angles, energies, masses ...

Developed by Paul Jackson and Christopher Rogan: http://RestFrames.com

Marco Santoni

What is the Recursive Jigsaw Reconstruction technique?

• Rather than obtaining one observable, get a complete basis of useful variables: angles, energies, masses ...

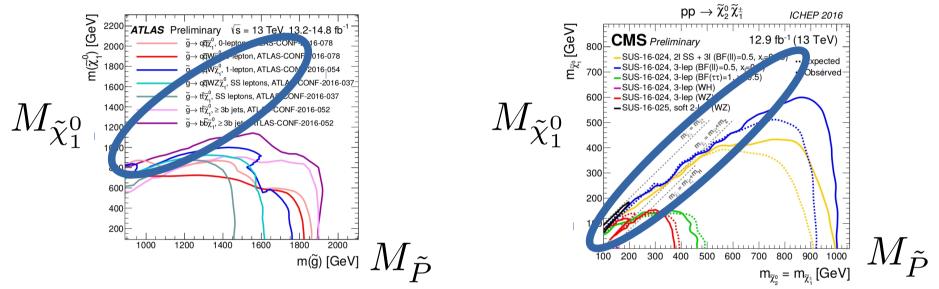

Developed by Paul Jackson and Christopher Rogan: http://RestFrames.com

UNIVERSIT

Marco Santoni

What is the Recursive Jigsaw Reconstruction technique?

• Rather than obtaining one observable, get a complete basis of useful variables: angles, energies, masses ...


Developed by Paul Jackson and Christopher Rogan: http://RestFrames.com

Marco Santoni

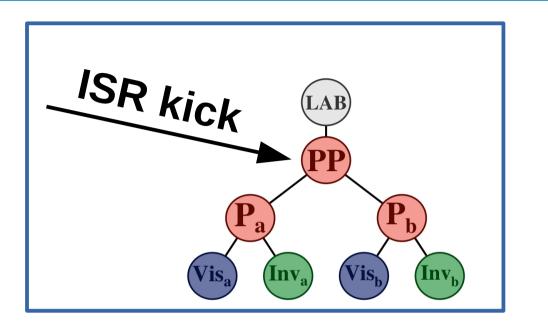
Introduction to compressed kinematics

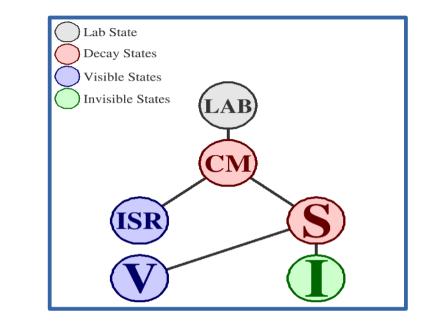
• Compressed scenarios refer to small mass-splittings $M_{\tilde{P}} - M_{\tilde{\chi}_1^0}$ between the parent superparticle \tilde{P} and the lightest supersymmetric particle (LSP) $\tilde{\chi}_1^0$

- Challenge > Low momentum decay products are hard to detect
 - \succ The LSPs result in a low value of the transverse missing momentum $ec{E}_T$
- To separate signal from BGs, consider only events with a high ${\bf momentum}$

of the initial state radiation (ISR) system

 In the limit where the LSPs receive no momentum from their parents' decays:


Marco Santoni

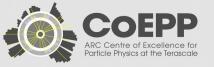

$$\vec{E}_T \sim -\vec{p}_T^{\mathrm{ISR}} imes rac{M_{\tilde{\chi}^0_1}}{M_{\tilde{P}}}$$

Sparticles in motion

- A *simple transverse* decay view of the event:
 - CM: centre-of-mass system including all visible objects and MET
 - ISR: radiation not coming from sparticle decays
 - S: the Signal/SUSY system decaying in
 - V: Visible system,

HE UNIVERSITY

- I: Invisible system = missing transverse momentum
- How do we separate initial state radiation from the other decay products?


The compressed Recursive Jigsaw Reconstruction tree

- Consider the worst scenario: final states with only light jets and MET
- We want to **separate** the jets between Lab State the visible system (\mathbf{V}) and **Decay States** those recoiling against it (**ISR**) Visible States **Invisible States** • Transverse view of the event $(P_z(jet_i) = 0)$ Zero mass for I system • $\vec{P}_T(CM) = \vec{E}_T + \sum \vec{P}_T(jet_i)$ Boost in the estimated CM frame Combinatoric jigsaw rule based on the minimization of the masses In CM frame $E_{CM} \equiv M_{CM} = \sqrt{M_{ISR} + p^2} + \sqrt{M_S + p^2}$

Equivalent to maximize p or find the thrust axis in the CM frame

Marco Santoni

HE UNIVERSITY

A complete basis of variables

Kinematics observables to probe SUSY in the compressed regime

Magnitude of the jets vector-sum transverse momentum of **ISR**-system $p_{\mathbf{ISR},T}$ evaluated in the CM frame ($\vec{p}_{ISR,T}^{CM} = -\vec{p}_{S,T}^{CM}$)

$$R_{\rm ISR} \equiv \frac{\left|\vec{p}_{\mathbf{I},T}^{\,\mathbf{CM}} \cdot \hat{p}_{\mathbf{ISR},T}^{\,\mathbf{CM}}\right|}{p_{\mathbf{ISR},T}^{\,\mathbf{CM}}} \sim \frac{M_{\tilde{\chi}_1^0}}{M_{\tilde{P}}}$$

Variable sensitive to the mass ratio

Lab State Decay States Visible States

Invisible States

ISF

CN

 $\Delta \phi_{\mathbf{ISR},\mathbf{I}}$

HE UNIVERSITY

 \mathbf{CM}

Transverse mass of **S** system (V+I)

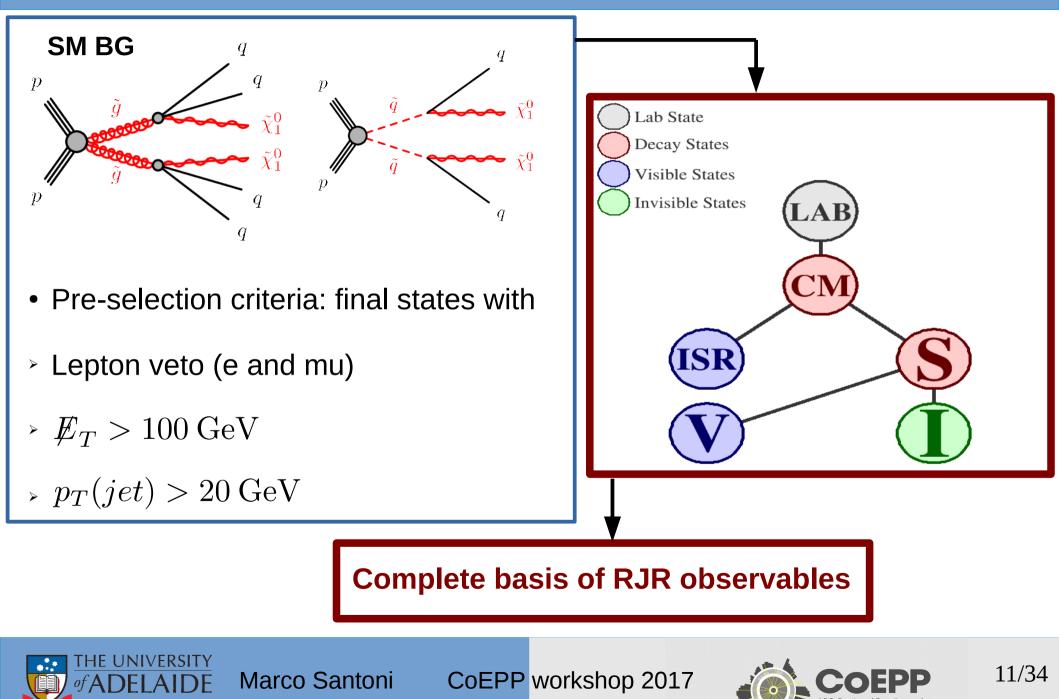
Marco Santoni

Number of jets assigned to the V system (i.e. not associated with the ISR system)

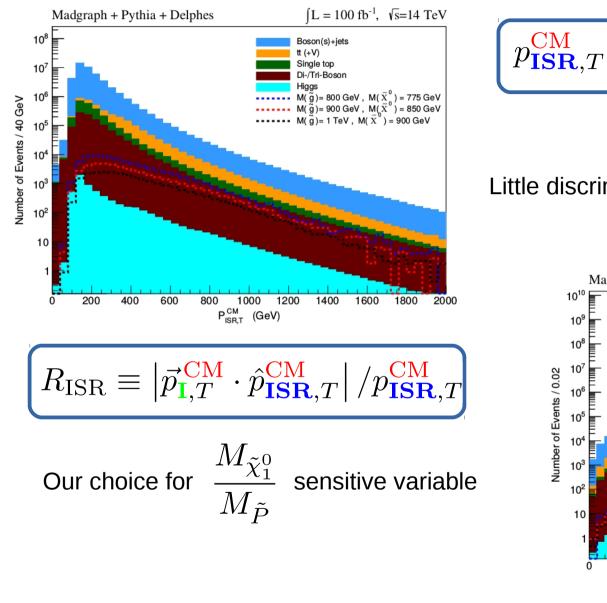
Opening angle between the ISR system and the I system, evaluated in the CM frame.

The samples

- Samples of all major Standard Model backgrounds as part of the Snowmass study simulated at 14TeV (see arXiv:1308.1636 and 1309.1057 for details)
- All signal and BG samples are generated/simulated using same versions and data_cards Madgraph+Pythia+Delphes with jet-parton matching and corrections for next-to-leading order (NLO) contributions.
- Signals: Squark and Gluino pair production in the compressed-regime

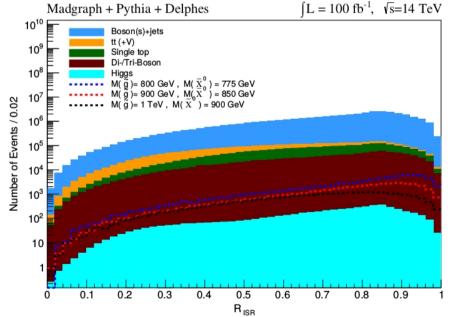

• Mass splittings: $M_{\tilde{P}} - M_{\tilde{\chi}_1^0} = 25, 50, 100, 200 \text{ GeV}$

Marco Santoni


- Squark mass $500 \text{ GeV} \le M_{\tilde{q}} \le 1000 \text{ GeV}$ Gluino Mass: $500 \text{ GeV} \le M_{\tilde{g}} \le 1400 \text{ GeV}$
- All samples are scaled to a projection of $\int L = 100 \text{fb}^{-1}$ arXiv:1607.08307 [hep-ph]

The compressed RJR tree

Compressed kinematics for squark/gluino

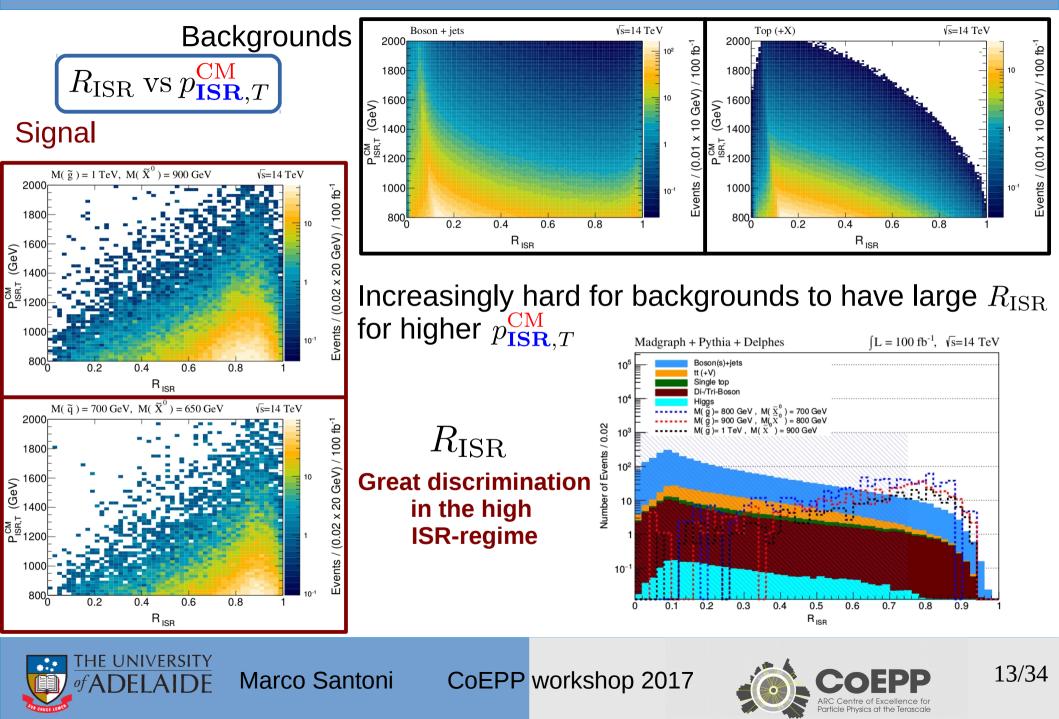

Marco Santoni

Little discrimination in the absence of other cuts

evaluated in CM frame

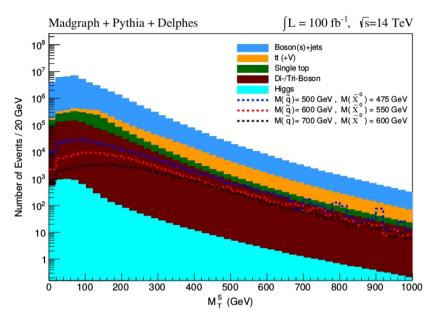
magnitude of vector-sum transverse

momentum of all 'ISR' associated jets



12/34

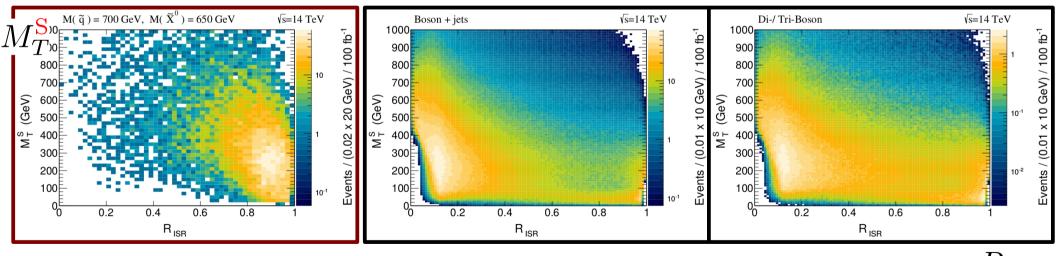
ticle Physics at the Terascale



Complementarity of the ratio and transverse ISR-momentum

Transverse mass of the S-system

Marco Santoni



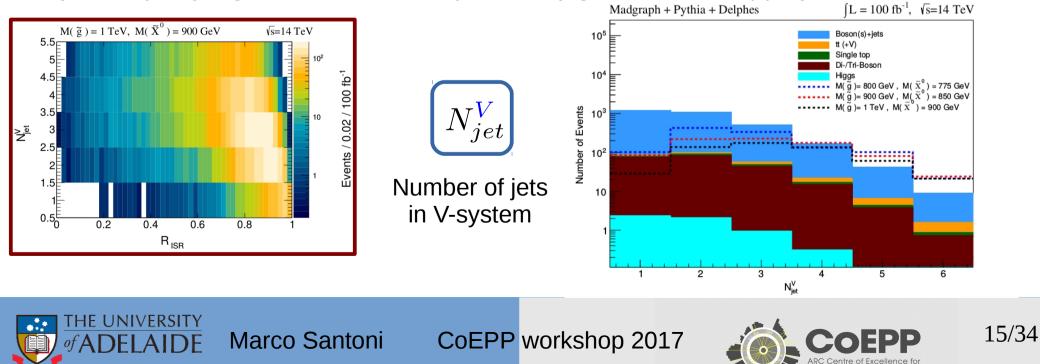
THE UNIVERSITY

Transverse mass of <mark>S</mark> (V+I) system

- Largely uncorrelated: complementary with other variables
- Good discrimination particularly against V+jets



 $R_{\rm ISR}$


CoEPP workshop 2017

Jet multiplicity in the V-system

After the high $p_{ISR,T}^{CM}$ selection criterion, we get excellent performances cutting harder on the jet multiplicity together with the ratio: particularly gluino vs Boson(s) + jets

Particle Physics at the Terascale

Inclusive gluino (squark) signal regions

Marco Santoni

A set of selection criteria for signal regions in the analysis of gluino (squark) pair-production defined targeting the mass splittings.

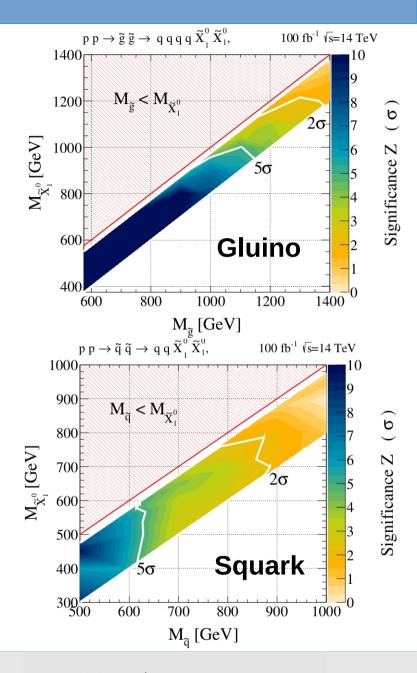
Variable \ Mass splitting [GeV]	$\Delta M = 25$	$\Delta M = 50$	$\Delta M = 100$	$\Delta M = 200$		
Preselection criteria	Lepton (e and mu) and <i>b</i> -jet veto, $\not\!$					
$p_{\mathbf{ISR},T}^{\mathbf{CM}} [\text{GeV}]$	> 1000					
$R_{\rm ISR}$	> 0.9	> 0.85	> 0.75	> 0.65		
$M_T^{\mathbf{S}} [\text{GeV}]$	-	100	250	400		
N_{jet}^{V}	≥ 3	(≥ 2)	≥ 4 (≥ 2)			
$p_T^{jet3,V}$ $(p_T^{jet2,V})$ [GeV]	> 20 (> 40)	> 30 (> 60)	> 40 (> 120)	> 50 (> 140)		
$\Delta \phi_{\mathbf{ISR},\mathbf{I}}$	> 3.0					

CoEPP workshop 2017

Results

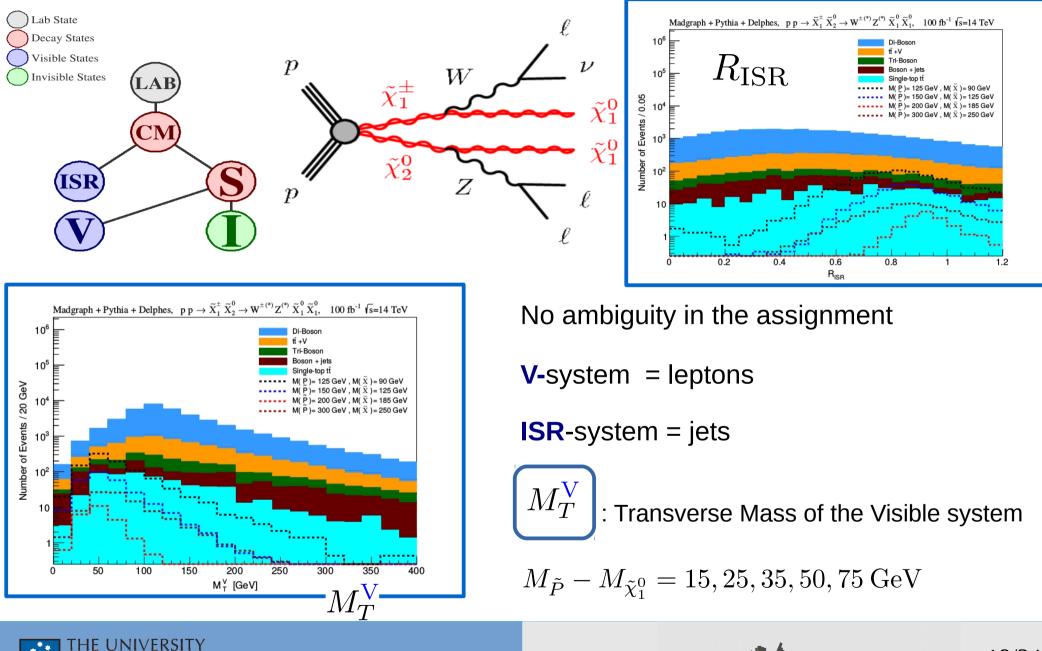
- Z-score from the RJR inclusive signal regions
- We assume **15%** for the background systematic uncertainty
- **Gluino** *Discover:* above 1 TeV *Exclusion:* up to 1.4 TeV
- **Squark** *Discover:* above 600 GeV *Exclusion:* between 800 and 900 GeV
- Optimisation can be improved using different signal regions for squark and gluino

RJR technique is used by ATLAS collaboration.


Compressed gluino-squark:

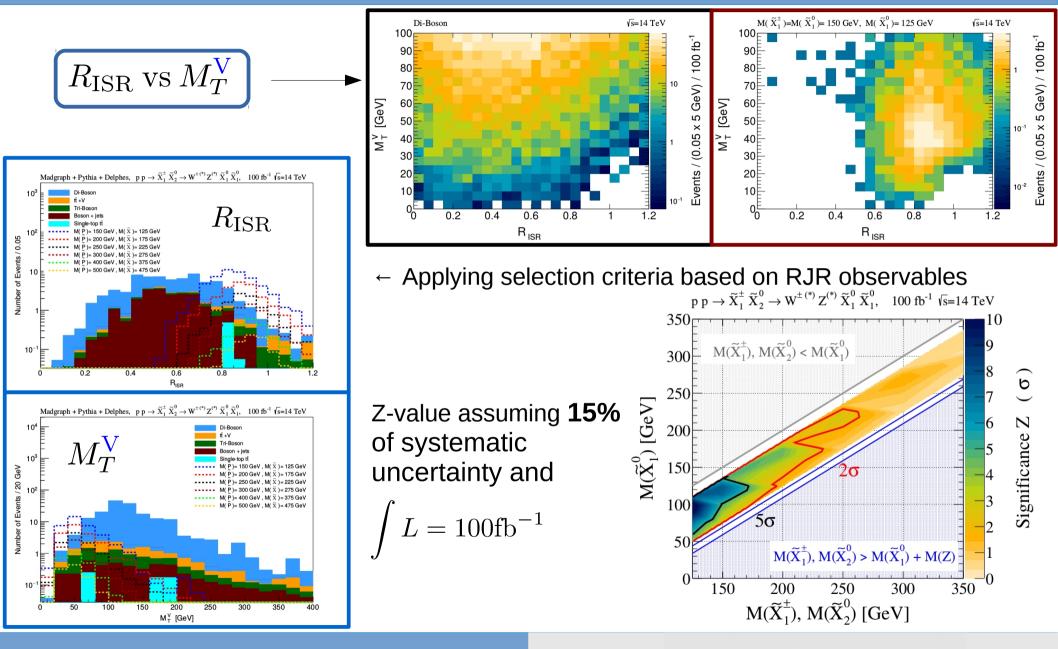
THE UNIVERSITY

ATLAS-CONF-2016-078 - ATLAS-CONF-2016-077


Marco Santoni

CoEPP workshop 2017

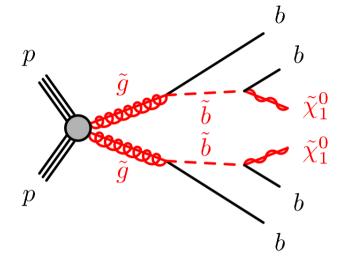
SUSY EWK : associated neutralino chargino production



CoEPP workshop 2017

Marco Santoni

EWKino: associated neutralino chargino production

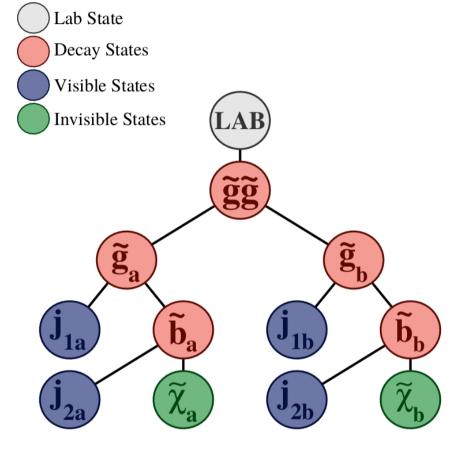

of ADELAIDE

Marco Santoni

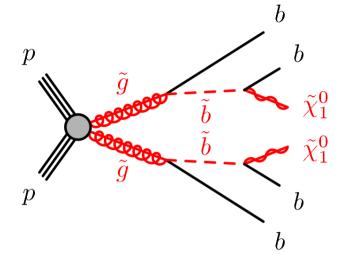
CoEPP workshop 2017

Gluino mediated sbottom pair production

- Open mass spectra: RJR tree describes the SUSY substructure
- Jigsaw rules: **unknown d.o.f. + combinatoric** travelling recursively through the frames
- Complete basis of scale and angular variables computed in the appropriate frame


 $M_{\tilde{g}\tilde{g}} E(j_{1a}) E(j_{2a}) E(j_{1b}) E(j_{2b})$

Marco Santoni

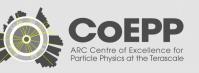

HE UNIVERSITY

 $\cos\theta_{\tilde{g}g} \quad \cos\theta_{\tilde{g}_a} \ \cos\theta_{\tilde{g}_b} \ \cos\theta_{\tilde{b}_a} \ \cos\theta_{\tilde{b}_b} \ \bigtriangleup\varphi_{\tilde{g}_a\tilde{g}_b} \ \bigtriangleup\varphi_{\tilde{g}_a\tilde{b}_a} \ \bigtriangleup\varphi_{\tilde{g}_b\tilde{b}_b}$

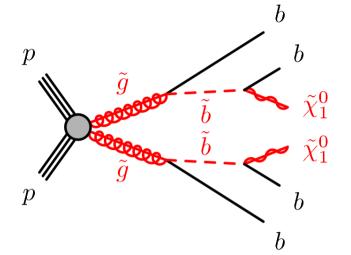
Gluino mediated sbottom pair production

- Open mass spectra: RJR tree describes the SUSY substructure
- Jigsaw rules: **unknown d.o.f. + combinatoric** travelling recursively through the frames
- Complete basis of scale and angular variables computed in the appropriate frame

 $M_{\tilde{g}\tilde{g}} E(j_{1a}) E(j_{2a}) E(j_{1b}) E(j_{2b})$


Marco Santoni

HE UNIVERSITY


Lab State - Set Invisible Rapidity **Decay States** - Set Invisible Mass Visible States - Contra-boost Invariant **Invisible States** gg ġ, ba b.

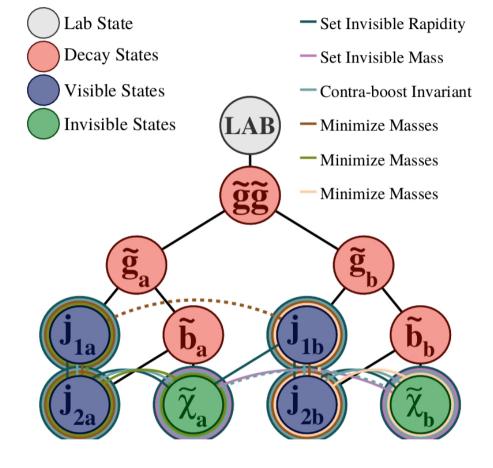
 $\cos\theta_{\tilde{g}g} \quad \cos\theta_{\tilde{g}_a} \ \cos\theta_{\tilde{g}_b} \ \cos\theta_{\tilde{b}_b} \ \cos\theta_{\tilde{b}_b} \ \bigtriangleup\varphi_{\tilde{g}_a\tilde{g}_b} \ \bigtriangleup\varphi_{\tilde{g}_a\tilde{b}_a} \ \bigtriangleup\varphi_{\tilde{g}_b\tilde{b}_b}$

CoEPP workshop 2017

Gluino mediated sbottom pair production

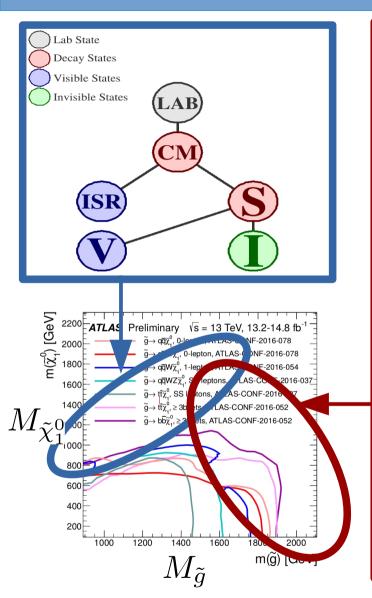
- Open mass spectra: RJR tree describes the SUSY substructure
- Jigsaw rules: **unknown d.o.f. + combinatoric** travelling recursively through the frames
- Complete basis of scale and angular variables computed in the appropriate frame

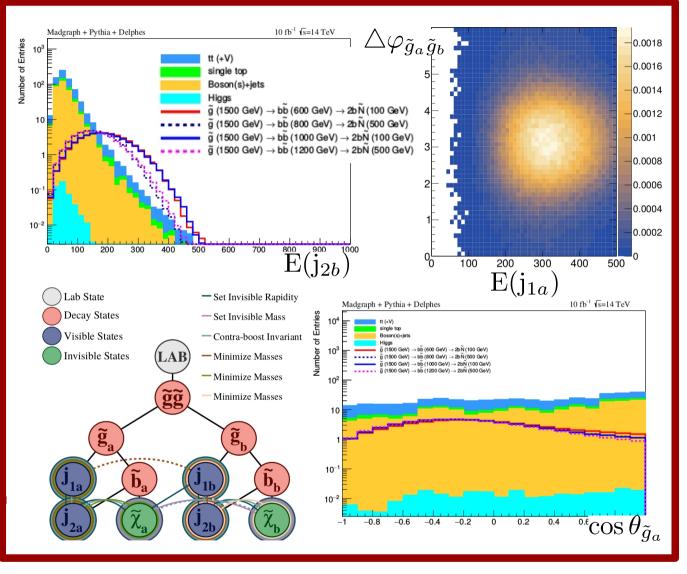
 $M_{\tilde{g}\tilde{g}} E(j_{1a}) E(j_{2a}) E(j_{1b}) E(j_{2b})$


Marco Santoni

HE UNIVERSITY

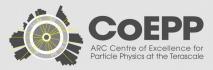
 $\cos\theta_{\tilde{g}g} \ \cos\theta_{\tilde{g}_a} \ \cos\theta_{\tilde{g}_b} \ \cos\theta_{\tilde{b}_b} \ \cos\theta_{\tilde{b}_b} \ \bigtriangleup\varphi_{\tilde{g}_a\tilde{g}_b} \ \bigtriangleup\varphi_{\tilde{g}_a\tilde{b}_a} \ \bigtriangleup\varphi_{\tilde{g}_b\tilde{b}_b}$



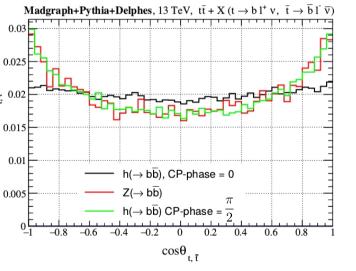


Gluino mediated sbottom production

Marco Santoni



Work in progress with Paul Jackson and Chris Rogan



CoEPP workshop 2017

Higgs + top pair production in di-leptonic channel

Lab State RJR tree → **Decay States** gVisible States Compare the observables that are Invisible States LAB sensitive to the CP nature of the Higgs Н CM Demonstrate the feasibility of the diqleptonic channel of $t\bar{t} + h$ at LHC with the \mathbf{b}_1 b, **RJR** method W n Madgraph+Pythia+Delphes, 13 TeV, $t\bar{t} + X (t \rightarrow b l^+ v, \bar{t} \rightarrow \bar{b} l^- \bar{v})$ 0.07 $b\overline{b}$). CP-phase = 0 0.06 $Z(\rightarrow b\overline{b})$ 0.05 → bb) CP-phase d(M(h)) 0.03 0.04 0.025 0.0 -IZ 0.01 بير $\frac{dN}{d(\cos\theta)}$

Work in progress with Lei Wu and Jason Yue

80

100

M(Z), M(h) [GeV]

120

140

Marco Santoni

160

180

200

0.02

0.01

0

40

20

THE UNIVERSITY

60

CoEPP workshop 2017

-lz

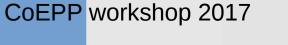
24/34

tt

 \overline{v}_{1}

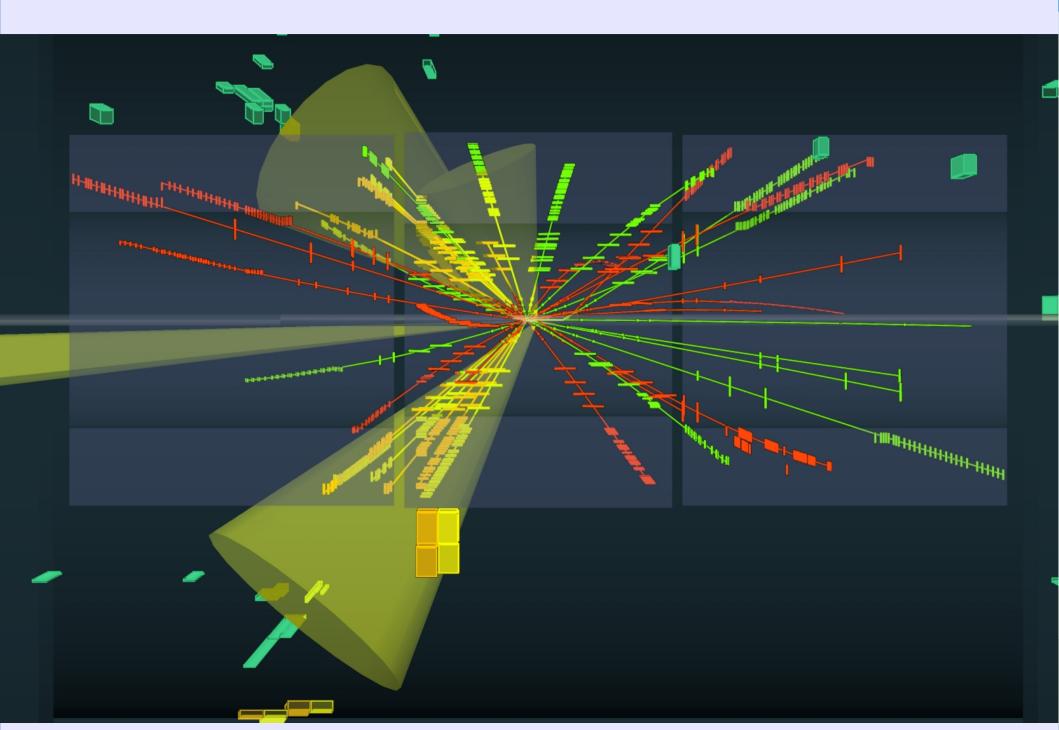
Summary - Outlook

- Demonstrated a new approach for open and compressed analyses based on the Recursive Jigsaw Reconstruction technique
- Compressed gluino squark scenarios: excellent performance for all mass-splittings and final state topologies studied (arXiv:1607.08307 [hep-ph])
- Compressed EWKino: No ambiguity in assignment of leptons and jets to ISR-V system:
 - Excellent performance for associated neutralino chargino production
 - > In preparation \rightarrow chargino pair production


Marco Santoni

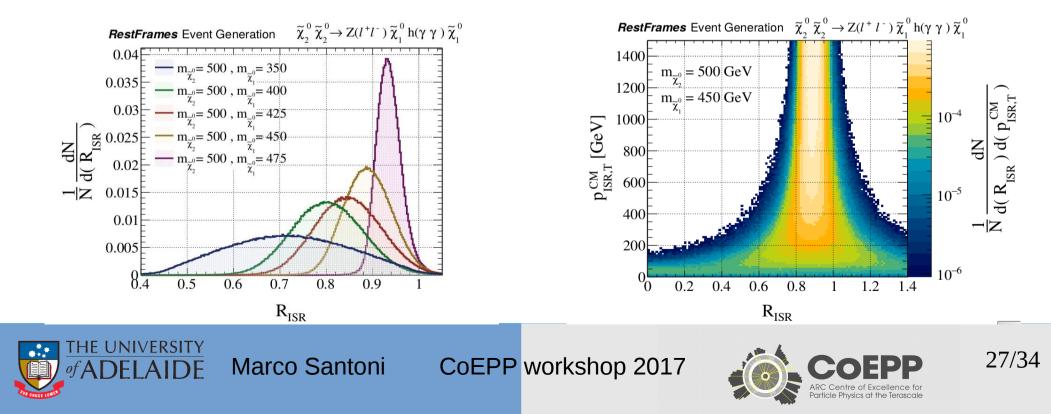
- RJR can be applied in principle to any open final states: SUSY and beyond
- > Gluino mediated sbottom production

>


HE UNIVERSI

- > Top pair (in di-leptonic channel) + Higgs
- The method is already being used by the ATLAS collaboration

THANKS FOR YOUR ATTENTION



Backup slides: sparticles in motion

• In the limit of soft momentum of the LSPs in the sparents frame:

$$R_{\rm ISR} \sim \left| \not\!\!E_T \cdot \hat{p}_{\mathbf{ISR},T} \right| / p_{\mathbf{ISR},T} \sim \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{P}}} \left[1 + \mathcal{O}\left(\frac{p_{\tilde{\chi}_1^0}^{\tilde{P}}}{2m_{\tilde{P}}}\right) \left(\frac{\sqrt{p_{\mathbf{ISR},T}^2 + m_{\tilde{P}\tilde{P}}^2}}{p_{\mathbf{ISR},T}}\right) \sin \Omega \right]$$

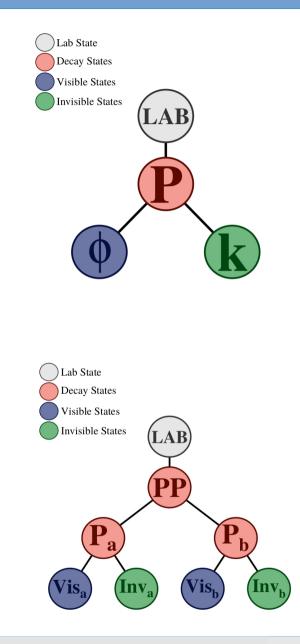
 R scales nicely with the mass ratio - Width depends on DM - Resolution improves with PTISR

Backup slides: set rapidity of the invisible particles

 $\beta_z \left(Lab \to Tra \right) \qquad 0 = \frac{\partial E_{\phi}^{Tra}}{\partial \beta_z}$ $0 = \left(1 - \beta_z^2 \right)^{-3/2} \left(\beta_z E_{\phi} - p_z(\phi) \right)$

$$\beta_z = \frac{p_z(\phi)}{E_\phi}$$

ΓHE UNIVERSITY


The guess for
$$\ p_z^{Tra}(P)=0$$

Being $p_z^{Tra}(\phi)=0$ - $\ p_z^{Tra}(k)=0$

All the observables in the transverse frame and any frames that recursively follow from it are independent from the true value \rightarrow Generalization

Marco Santoni

$$\beta_z = \frac{p_z(Vis_a) + p_z(Vis_b)}{E_{Vis_a} + E_{Vis_b}}$$

CoEPP workshop 2017

Backup slides: NC signal regions

Marco Santoni

$\downarrow \text{Variable } \backslash \Delta M \text{ [GeV]} \rightarrow$	$\Delta M = 15$	$\Delta M = 25$	$\Delta M = 35$	$\Delta M = 50$	$\Delta M = 75$		
Objects criteria	3 Leptons (e and mu) $p_T(lep) > 10$ GeV,						
	At least one jet, $p_T(jet) > 20$ GeV, $N_{b-jet}^{\text{ISR}} = 0$						
$p_{\text{ISR},T}^{\text{CM}}(\not\!\!E_T)$ [GeV]	> 50			> 70	> 100		
N_{jet}^{ISR}	< 3	< 4		< 3			
$M_T^{\mathcal{V}}$, for 3 SFL [GeV]	< 40	< 50	< 60	< 70	< 80		
$M_{l^+l^-}$, for 2 SFL [GeV]	$< riangle M$ with $M_T^{ m V} < 100~{ m GeV}$						
$\Delta \phi_{\rm CM,I}$	> 2						
$\Delta \phi_{\rm ISR,I}$	> 3						

Backup slides NC signal regions

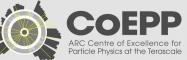
Marco Santoni

$$R_{\rm ISR} \sim \left| \not\!\!E_T \cdot \hat{p}_{{\rm ISR},T} \right| / p_{{\rm ISR},T} \sim \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{P}}} \left[1 + \mathcal{O}\left(\frac{p_{\tilde{\chi}_1^0}^{\tilde{P}}}{2m_{\tilde{P}}}\right) \left(\frac{\sqrt{p_{{\rm ISR},T}^2 + m_{\tilde{P}\tilde{P}}^2}}{p_{{\rm ISR},T}}\right) \sin\Omega \right]$$

${\rm GeV} \rightarrow$	$\Delta M = 15$	$\Delta M = 25$	$\Delta M = 35$	$\Delta M = 50$	$\Delta M = 75$
$M_{\tilde{P}}=125 \text{ GeV}$	0.80 - 1.15	0.80 - 1.15	0.80 - 1.20	0.70 - 1.15	0.65 - 1.10
$M_{\tilde{P}}$ =150 GeV	0.85 - 1.05	0.80 - 1.15	0.80 - 1.20	0.70 - 1.15	0.70 - 1.10
$M_{\tilde{P}}=200 \text{ GeV}$	0.85 - 1.05	0.85 - 1.15	0.80 - 1.20	0.70 - 1.15	0.70 - 1.10
$M_{\tilde{P}}{=}250 \text{ GeV}$	0.90 - 1.05	0.85 - 1.15	0.85 - 1.20	0.75 - 1.05	0.75 - 1.10
$M_{\tilde{P}}$ =300 GeV	0.90 - 1.05	0.85 - 1.15	0.85 - 1.20	0.75 - 1.05	0.75 - 1.10
$M_{\tilde{P}}$ =400 GeV	0.90 - 1.05	0.90 - 1.15	0.85 - 1.20	0.80 - 1.05	0.75 - 1.10
$M_{\tilde{P}}{=}500 \text{ GeV}$	0.90 - 1.05	0.90 - 1.15	0.85 - 1.20	0.85 - 1.05	0.80 - 1.10

Backup slides

- In order to distinguish between signal and backgrounds we need an ISR system to give our ٠ sparticles a transverse kick: the response of the sparticle decay products is sensitive to the mass of the LSP
- In the limit where the LSPs receive no momentum from their parents' decays: •


$$\vec{E}_T \sim -\vec{p}_T^{\rm ISR} \times \frac{m_{\tilde{\chi}}}{m_{\tilde{P}}}$$

Different proxies for pTISR in the recent literature

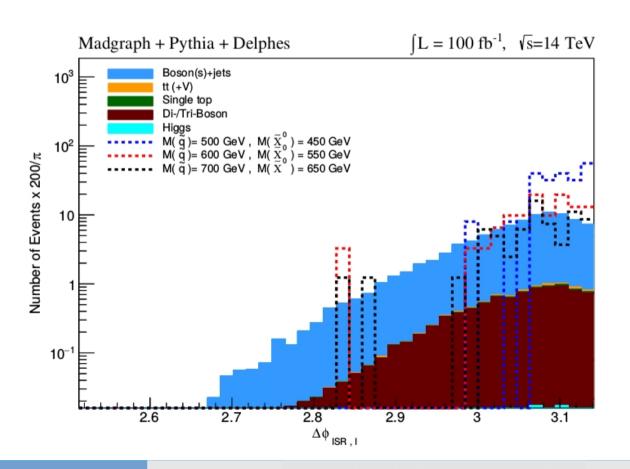
arXiV:1506.00653
$$\frac{\not\!\!\!E_T}{p_T^{\text{lead jet}}}$$
arXiV:1506.07885v1
$$\frac{\not\!\!\!E_T}{\sqrt{H_T}}$$
arXiv:1605.06479 final state jet hierarchy

• Rather than relying on a clean mono-ISR signal or a priori assumption of the sparticles masses we want to separate "ISR objects" from "sparticle objects"

Backup slides: sparticles in motion

More discrimination from the angular variable

Marco Santoni

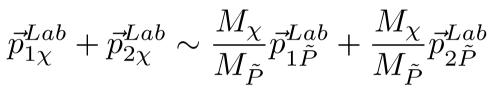

N-1 distribution.

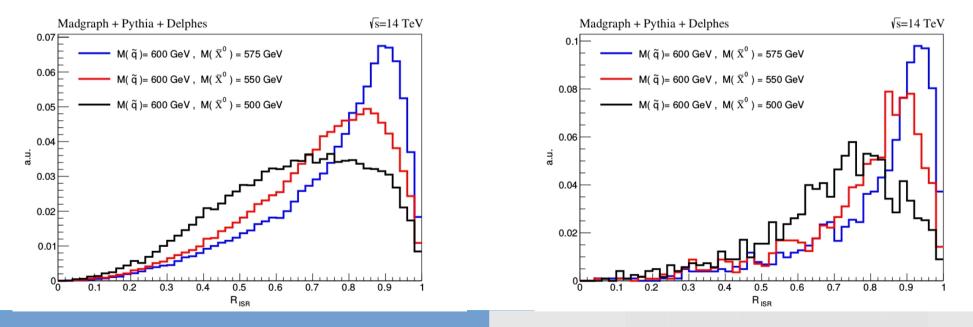
Although both signal and background distributions tend towards π the signal has a much stronger tendency to do so.

 $\Delta \phi_{\mathbf{ISR},\mathbf{I}}$

Good for optimisation

HE UNIVERSITY

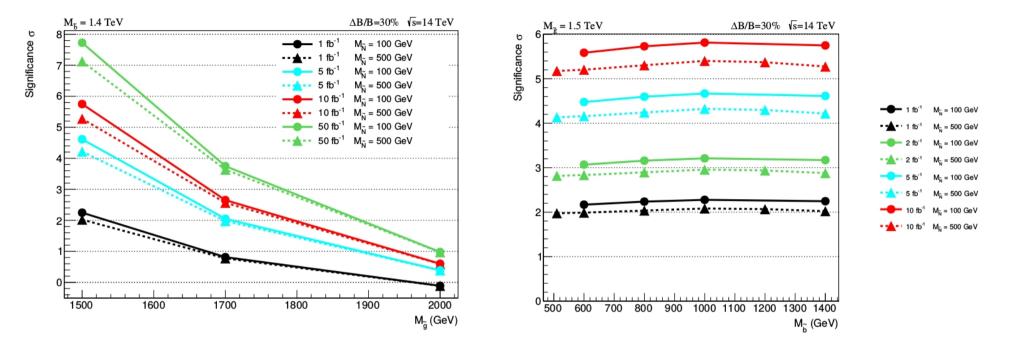



Backup slides: sparticles in motion

• In the limit of soft momentum of the LSPs in the sparents frame:

$$R_{\rm ISR} \sim \left| \not\!\!E_T \cdot \hat{p}_{{\rm ISR},T} \right| / p_{{\rm ISR},T} \sim \frac{m_{\tilde{\chi}_1^0}}{m_{\tilde{P}}} \left[1 + \mathcal{O}\left(\frac{p_{\tilde{\chi}_1^0}^{\tilde{P}}}{2m_{\tilde{P}}}\right) \left(\frac{\sqrt{p_{{\rm ISR},T}^2 + m_{\tilde{P}\tilde{P}}^2}}{p_{{\rm ISR},T}}\right) \sin\Omega \right]$$

- R scales nicely with the mass ratio. Better after some PTISR requirement
- First term



Backup slides: preliminary $\sim gg \rightarrow \sim bb$

Sensitivity decreases with gluino-production cross section as expected

- But it's pretty independent of LSP mass (till to the compressed regime)
- And very independent of sbottom mass (also off-shell sbottoms)

HE UNIVERSITY

- Cutting hard on e.g. jet pTs or MET would have killed sensitivity for small mass splittings
- Preliminary, after 5 fb-1 of LHC14, >4 σ sensitivity to a 1.5 TeV gluino for low gluino-sbottom and sbottom-LSP mass splittings (30% systematics) Next \rightarrow optimization for m(~q) 1.9- 2 TeV and large m(LSP)

Marco Santoni CoEPP workshop 2017

