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Motivation

Motivation

In the standard model, there are sphaleron-mediated processes
that washout any baryon asymmetry produced before the
electroweak phase transition.

The suppression of these processes requires a first order phase
transition with φc

Tc
& 1

The EWPT is second order in the standard model
The energy density of monopoles can contribute to the energy of
the broken phase, enhancing the phase transition while satisfying
nucleosynthesis constraints.
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Kibble mechanism

The Kibble Mechanism

At T = Tc , domains of the broken phase will appear

The higgs field in each domain takes independent directions on
the vacuum manifold

φ4

φ3

φ2
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φ = 0
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Kibble mechanism

The Kibble mechanism

As the Higgs field is continuous, it must be interpolated at the
intersections.

Consider an intersection of four of these domains:
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Kibble mechanism

The Kibble mechanism

In field space, these points form the vertices of a tetrahedron.

This tetrahedron should be shrunk to a point at the intersection.
If these cannot be shrunk to a point continuously, a topological
defect in the form of a monopole which continuously joins the two
minima.
The tetrahedron is homotopically equivalent to S2.
Therefore, π2(Mvac) 6= 0 implies the existence of monopoles
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Kibble mechanism

The standard model

For the standard model, Mvac = (SU(2)× U(1)Y )/U(1)Q

π2(Mvac) = π2(S3) = 0

No electroweak monopoles?
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Cho-Maison monopoles

The Ansatz

Cho and Maison (1997) found electroweak monopoles through the
ansatz:

φ =
1√
2
ρξ

ρ = ρ(r)

ξ = i
(

sin(θ/2)e−iϕ

− cos(θ/2)

)
Aµ =

1
g

A(r)∂µt φ̂+
1
g

(f (r)− 1)φ̂× ∂µφ̂

Bµ = − 1
g′

B(r)∂µt − 1
g′

(1− cos θ)∂µϕ
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Cho-Maison monopoles

The Ansatz

ξ = i
(

sin(θ/2)e−iϕ

− cos(θ/2)

)

Note that there is a missing phase

The U(1)Y gauge freedom is used to remove this phase.
Mvac = SU(2)/U(1) ∼= CP1

π2(Mvac) = Z
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Cho-Maison monopoles

Solution

Simple solution: A = B = 0 (Cho & Maison, 1997)

h = 4π
e

MW r
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Cho-Maison monopoles

The energy

E = E0 + E1

E0 = 4π
∫ ∞

0

dr
2r2

{
1

g′2
+

1
g2 (f 2 − 1)2

}

E1 = 4π
∫ ∞

0
dr
{

1
2

(r ρ̇)2 +
1
g2

(
ḟ 2 +

1
2

(r Ȧ)2 + f 2A2
)

+
1

2g′2
(r Ḃ)2 +

λr2

8
(ρ2 − ρ2

0)2

+
1
4

f 2ρ2 +
r2

8
(B − A)2ρ2

}

The first term of E0 is divergent at the origin.
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Cho-Maison monopoles

Regularisation

Cho, Kim and Yoon(2015) proposed a regularisation of the form:

g′ → g′√
ε

ε =

(
φ

φ0

)n

However, g′ becomes non-peturbative as φ→ 0.
This is undesirable in an EFT framework.
We instead propose a Born-Infeld modification for the U(1)Y
kinetic term.
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Cho-Maison monopoles

Born-Infeld modification
We regularise the U(1)Y kinetic term by replacing it with:

β2

[
1−

√
−det

(
ηµν +

1
β

Bµν

)]

= β2

[
1−

√
1 +

1
2β2 BµνBµν − 1

16β4 (BµνB̃µν)2

]

As β →∞, the SM is recovered.
The corresponding energy is∫ ∞

0
drβ2

√(4πr2)2 +

(
4π
g′β

)2

− 4πr2


=

4π5/2

3Γ
( 3

4

)2

√
β

g′3

Hence, β acts as a mass parameter for the monopoles.
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The effect on the electroweak phase transition

The electroweak phase transition

The Gibbs free energy:

Gu = V (0)

Gb = V (φc(T )) + Emonopoles

At the critical temperature:

V (0) = V (φc(Tc)) + Emonopoles

Assuming T << M,the monopoles are decoupled and
Emonopoles = M × nM
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The effect on the electroweak phase transition

The initial density

nM ≈ 1
d3 where d is the separation of two uncorrelated monopoles.

This is chosen to be the Coulomb capture distance.

Hence, nM ≈
(4π

h2

)3
T 3
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The effect on the electroweak phase transition

Results

100 1000 104 105
MHTeVL0.0

0.5

1.0

1.5

Φc

Tc

Sphaleron processes are suppressed for M > 0.9 · 104 TeV.
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Nucleosynthesis constraint

The constraint

The monopole density should not dominate the universe at the
time of helium synthesis. This implies:

n
T 3

∣∣
T=1MeV

< 1MeV
M

Hence, the evolution of the number density over time must be
considered.
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Nucleosynthesis constraint

The number density at lower temperatures

Consider monopoles drifting towards anti monopoles in a plasma
of charged fermions.

Scattering cross-section: σqi M = (hqi/4π)2T−2

After ∼ M
T collisions, the monopole is scattered at a large angle

and drifts towards the antimonopole.
This yields a mean free path of:

λ ≈ vdrift∑
i niσi

M
T

≈ 1
B

(
M
T 3

)1/2

B = 3
4π2 ζ(3)

∑
i (hqi/4π)2
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Nucleosynthesis constraint

Annihilation ends when λ ≈ h2

4πT , the Coulomb capture radius.

This occurs at Tf ≈
(4π

h2

)2 M
B2

For T < Tf , the monopole density simply dilutes as n ∝ T 3.
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Nucleosynthesis constraint

Nucleosynthesis constraint

Solving the Boltzmann equation, one obtains (Preskill, 1979)

n
T 3 =

1
Bh2

(
4π
h2

)2 M
CMpl

, (T > Tf )

C = (45/4π3N)1/2

This constrains the mass of the monopole to M . 2.3 · 104 TeV.
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Nucleosynthesis constraint

Summary and future work

Sphaleron mediated processes can be made ineffective while
remaining under the nucleosynthesis constraints.

This occurs for monopoles with a mass of (0.9− 2.3) · 104TeV.
This could possibly be extended to a new mechanism for
electroweak baryogenesis
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