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Motivation
Motivation

@ In the standard model, there are sphaleron-mediated processes
that washout any baryon asymmetry produced before the
electroweak phase transition.

@ The suppression of these processes requires a first order phase
transition with ¢ > 1

@ The EWPT is second order in the standard model

@ The energy density of monopoles can contribute to the energy of
the broken phase, enhancing the phase transition while satisfying
nucleosynthesis constraints.
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The Kibble Mechanism

@ At T = T, domains of the broken phase will appear

@ The higgs field in each domain takes independent directions on
the vacuum manifold
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Kibble mechanism
The Kibble mechanism

@ As the Higgs field is continuous, it must be interpolated at the
intersections.

@ Consider an intersection of four of these domains:
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Kibble mechanism
The Kibble mechanism

@ In field space, these points form the vertices of a tetrahedron.

@ This tetrahedron should be shrunk to a point at the intersection.

@ If these cannot be shrunk to a point continuously, a topological
defect in the form of a monopole which continuously joins the two
minima.

@ The tetrahedron is homotopically equivalent to S2.

@ Therefore, mo(Myac) # 0 implies the existence of monopoles
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Kibble mechanism
The standard model

@ For the standard model, Myac = (SU(2) x U(1)y)/U(1)q
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Kibble mechanism
The standard model

@ For the standard model, Myac = (SU(2) x U(1)y)/U(1)q
o 7T2(Mvac) = 7T2(83) = 0

@ No electroweak monopoles?
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Cho-Maison monopoles
The Ansatz

@ Cho and Maison (1997) found electroweak monopoles through the

ansatz:
’
¢ = EPE
p=p(r)
. (sin(8/2)e" ¥
=i (Tist )

1 A~ A -
A, = §A(r)8ﬂt¢ + g(f(r) —1)¢ x Ouo

B, = _;B(r)aﬂt — —,(1 —€0s6)0,p
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Cho-Maison monopoles
The Ansatz

. (sin(8/2)e "
£=1 ( —cos(0/2) >

@ Note that there is a missing phase
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@ Note that there is a missing phase
@ The U(1)y gauge freedom is used to remove this phase.
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Cho-Maison monopoles
The Ansatz

e sin(9/2)e~'¥
~\_—cos(0/2)
@ Note that there is a missing phase
@ The U(1)y gauge freedom is used to remove this phase.

o Mo = SU(2)/U(1) = CP!
0 mo(Mac) = Z
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Cho-Maison monopoles

Solution

@ Simple solution: A= B = 0 (Cho & Maison, 1997)
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Cho-Maison monopoles

Solution

@ Simple solution: A= B = 0 (Cho & Maison, 1997)
@ h= ‘%r
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Cho-Maison monopoles
The energy

E:E0+E1
1 2 2
e [ 2r2{ 2 g 1)

E, = 47r { <f2 E(rA)2 + f2A2>

2; (rBY + %(p R

+
1 r
+Zf2p2 + 8(BA)2p2}

@ The first term of Ey is divergent at the origin.
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Cho-Maison monopoles
Regularisation

@ Cho, Kim and Yoon(2015) proposed a regularisation of the form:
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@ Cho, Kim and Yoon(2015) proposed a regularisation of the form:
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@ However, g’ becomes non-peturbative as ¢ — 0.
@ This is undesirable in an EFT framework.
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Cho-Maison monopoles
Regularisation

@ Cho, Kim and Yoon(2015) proposed a regularisation of the form:

/
g-ZL

e

n
()
o)
@ However, g’ becomes non-peturbative as ¢ — 0.

@ This is undesirable in an EFT framework.

@ We instead propose a Born-Infeld modification for the U(1)y
kinetic term.
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Cho-Maison monopoles

Born-Infeld modification

@ We regularise the U(1)y kinetic term by replacing it with:

.

1 1
— 52 l1 — \/1 + TﬁQB‘“’BHV 1654(BIWB )

Suntharan Arunasalam University of Sydney



Cho-Maison monopoles

Born-Infeld modification

@ We regularise the U(1)y kinetic term by replacing it with:
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@ As 8 — oo, the SM is recovered.
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Cho-Maison monopoles

Born-Infeld modification

@ We regularise the U(1)y kinetic term by replacing it with:

.

1 1
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@ As 8 — oo, the SM is recovered.
@ The corresponding energy is
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Cho-Maison monopoles

Born-Infeld modification

@ We regularise the U(1)y kinetic term by replacing it with:

.

1 1
= ﬂ2 |:I — \/1 —+ 27628#”8“’1/ 1664(81“/8 )

@ As 8 — oo, the SM is recovered.
@ The corresponding energy is

00 2
/ dr3? [\/(47#2)2 + ,7T ) — 47rr2]
0 B
B 475/2 B
EGCRG

@ Hence, § acts as a mass parameter for the monopoles.
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The effect on the electroweak phase transition

The electroweak phase transition

@ The Gibbs free energy:

Gy = V(0)
C';b = V(QbC(T)) + Emonopoles

@ At the critical temperature:

V(O) = V(CbC(Tc)) + Emonopoles

@ Assuming T << M,the monopoles are decoupled and
Emonopo/es =M x ny
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The effect on the electroweak phase transition

The initial density

@ Ny~ % where d is the separation of two uncorrelated monopoles.
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The effect on the electroweak phase transition

The initial density

@ Ny~ % where d is the separation of two uncorrelated monopoles.
@ This is chosen to be the Coulomb capture distance.

@ Hence, ny ~ (‘,’7—’;)3 T3
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The effect on the electroweak phase transition

Results

dc
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@ Sphaleron processes are suppressed for M > 0.9 - 10* TeV.
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Nucleosynthesis constraint

The constraint

@ The monopole density should not dominate the universe at the
time of helium synthesis. This implies:
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time of helium synthesis. This implies:
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Nucleosynthesis constraint

The constraint

@ The monopole density should not dominate the universe at the
time of helium synthesis. This implies:

n 1MeV
o T3}T=1Mev< M

@ Hence, the evolution of the number density over time must be
considered.
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Nucleosynthesis constraint

The number density at lower temperatures

@ Consider monopoles drifting towards anti monopoles in a plasma
of charged fermions.
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@ Scattering cross-section: oqy = (hq;/47)2T 2

o After ~ ¥ collisions, the monopole is scattered at a large angle
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Nucleosynthesis constraint

The number density at lower temperatures

@ Consider monopoles drifting towards anti monopoles in a plasma
of charged fermions.

@ Scattering cross-section: oqy = (hq;/47)2T 2

o After ~ ¥ collisions, the monopole is scattered at a large angle
and drifts towards the antimonopole.

@ This yields a mean free path of:

_ Varir M
Zi njo; T

1/ M\"?
“5(%)
o B=2((8)X; (hqgi/4r)?
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Nucleosynthesis constraint

@ Annihilation ends when \ ~ 4%, the Coulomb capture radius.
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Nucleosynthesis constraint

@ Annihilation ends when \ ~ 4%, the Coulomb capture radius.
44)2 M
) B

@ For T < T, the monopole density simply dilutes as n o< T°.

@ This occurs at Ty ~ (
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Nucleosynthesis constraint

@ Solving the Boltzmann equation, one obtains (Preskill, 1979)

n 1 (4\* M
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Nucleosynthesis constraint

Nucleosynthesis constraint

@ Solving the Boltzmann equation, one obtains (Preskill, 1979)

n_ 1 (4r\* M
7'3:Bh?<h2> ey (72T

@ C=(45/4r3N)!/2
@ This constrains the mass of the monopole to M < 2.3 -10* TeV.
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Nucleosynthesis constraint

Summary and future work

@ Sphaleron mediated processes can be made ineffective while
remaining under the nucleosynthesis constraints.
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Nucleosynthesis constraint

Summary and future work

@ Sphaleron mediated processes can be made ineffective while
remaining under the nucleosynthesis constraints.

@ This occurs for monopoles with a mass of (0.9 — 2.3) - 10*TeV.

@ This could possibly be extended to a new mechanism for
electroweak baryogenesis
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