Higher-order corrections to differential WW production

Marius Wiesemann

LHC EWK WG multiboson discussion, CERN (Switzerland)
13. Fabruary, 2017

in collaboration with M. Grazzini, S. Kallweit, S. Pozzorini and D. Rathlev

Outline

- I. Motivation and introduction to precision computations
- 2. The MATRIX
- 3. Theoretical status of WW production
- 4. WW at NNLO+NNLL (p_T resummation)
- 5. pp→WW→IIvv at NNLO (fully differential)
- 6. Inclusion of the Higgs contribution

Introduction

CERN

Higgs

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

vector-boson pairs

All vector-boson pair processes are on the Les Houches NNLO wishlist 2013

February 13, 2017

Introduction

vector-boson pairs

All vector-boson pair processes are on the Les Houches NNLO wishlist 2013

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from F+Ijet process at NLO

- p_T subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15], [Boughezal, Liu, Petriello '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from F+Ijet process at NLO

- p_T subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15], [Boughezal, Liu, Petriello '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

Two-loop amplitudes required for each process!

February 13, 2017

p_T subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

subtraction terms known from resummation:

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

Resummation formula:

$$\frac{d\sigma^{(\text{res})}}{dp_T^2\,dy\,dM\,d\Omega} \sim \int db\,\frac{b}{2}\,J_0(b\,p_T)\,S(b,A,B)\,\mathcal{H}_{N_1,N_2}\,f_{N_1}\,f_{N_2}$$

[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

subtraction terms known from resummation:

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

NNLO accuracy consequence of unitarity:

$$\int dp_T^2 \frac{d\sigma^{(\text{res})}}{dp_T^2 dy dM d\Omega} = \mathcal{H} \otimes d\sigma_{\text{LO}} \qquad \left(\ln(Q^2 b^2 / b_0^2) \to \ln(Q^2 b^2 / b_0^2 + 1)\right)$$

Resummation formula:

$$rac{d\sigma^{({
m res})}}{dp_T^2\,dy\,dM\,d\Omega} \sim \int db\,rac{b}{2}\,J_0(b\,p_T)\,S(b,A,B)\,{\cal H}_{N_1,N_2}\,f_{N_1}\,f_{N_2}$$

[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

pt subtraction master formula:

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

[Catani, Grazzini '07]

practical implementation:

- subtraction not local
- both terms in squared brackets separately divergent
- introduce lower cut-off r_{cut} on dimensionless quantity $r = p_{T,WW}/m_{WW}$
- use very small r_{cut} value and integrate both terms separately down to $r \ge r_{cut}$
- * assumption: for $r \le r_{cut}$ terms cancel (true up to power-suppressed terms)
- to be shown: small residual r_{cut} dependence as $r_{cut} \rightarrow 0$
- numerics forbids arbitrarily small r_{cut} values: use fit towards $r_{cut} \rightarrow 0$ limit

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

stability of r_{cut} dependence

We implemented...

The MATRIX framework

[Grazzini, Kallweit, Rathlev, MW] (+Sargsyan)

Amplitudes

OPENLOOPS (COLLIER, CUTTOols, ...)

Munich

MUlti-chaNnel Integrator at Swiss (CH) precision

 q_{T} subtraction $\iff q_{\mathrm{T}}$ resummation

MATRIX

Munich Automates qT Subtraction and Resummation to Integrate X-sections.

The MATRIX

```
9 9 9

    Mars — ssh — 174×63.

[wiesemann:-/munich-http/MATRIX] ./matrix
            MATRIX: A fully-differential NNLO(+NNLL) process library
                                                                  11 33
                       Version: 1.0.betal
                                                                Dec 2815
             Munich -- the MUIti-chaNnel Integrator at swiss (CH) precision --
             Automates oT-subtraction and Resummation to Integrate X-sections
             M. Grazzini
                                                         (grazzini@physik.uzh.ch)
            S. Kallweit
                                                          (kallweit@uni-mainz.de)
             D. Rathley
                                                          (rathlew@physik.uzh.ch)
                                                          (mariusw@physik.uzh.ch)
             N. Wiesenann
            MATRIX is based on a number of different computations and tools
             from various people and groups. Please acknowledge their efforts
            by citing the list of references which is created with every run.
SYMATRIX-READ>> Type process_id to be compiled and created. Type "list" to show available processes. Try pressing TAB for auto-completion. Type
                 "exit" or "quit" to stop.
<MATRIX-READ>> No suitable process_id or command has been entered. Try again...
<<MATRIX-READ>> You have to choose a process_id from the following list:
process_id || process
                                                     || description
pph21
              >> pp --> H
                                                  >> on-shell Higgs production
              >> pp --> Z
                                                     >> on-shell Z production
ppz01
рри01
              >> pp --> WA.
                                                     >> on-shell W+ production, NOT FULLY TESTED YET
ppwxd1
              55 pp --> W*+
                                                     >> on-shell W- production, NOT FULLY TESTED YET
              >> pp --> e^- e^+
ppeex82
                                                     >> Z production with decay
              55 p p --> v_e^+ v_e^+
                                                     >> Z production with decay
ppnenex92
                   p p --> e^+ v_e^-
                                                          W- production with decay, NOT FULLY TESTED YET W- production with decay, NOT FULLY TESTED YET
ppexne@2
                   p p --> e^- v e^+
                   P P --> H H
                                                     >> on-shell double Higgs production
                                                     >> on-shell gamma gamma production
орва82
              >> p p --> gamma gamma
                                                     >> on-shell ZZ production
              >> pp --> Z Z
ppzz02
ppeexa93
              >> p p --> e^- e^+ gama
                                                     >> Z gamma & gamma gamma with decay
              55 p p --> v_e^- v_e^+ gama
                                                     >> Z gamma & gamma gamma with decay
pnenexa83
                  p p --> e^- e^- e^+ e^+
                                                     >> ZZ & Z gamma & gamma gamma with decay
>> ZZ & Z gamma & gamma gamma with decay
                  p p --> e^- nu^- e^+ nu^+
                   p p --> e^+ v_e^- ganna
                                                     >> W+ gamma with decay
              bb pp --> e^- v_e^+ ganna
                                                     >> W- gamma with decay
ppenxnnnex84 >> p p --> e^- nu^+ v_mu^- v_e^+
                                                     >> Www production with decay
ppenexnax\theta4 \Rightarrow p p \rightarrow e^{\Lambda} nv^{\Lambda} e^{\overline{\Lambda}} v mv^{\overline{\Lambda}}
                                                     >> W-Z production with decay
ppeexmxnn84 >> p p --> e^- e^+ nu^+ v_mu^-
                                                      >> W+Z production with decay
         www.pph21
```

The Status

process	statu	comment
$pp \rightarrow \mathbf{Z}/\gamma * (\rightarrow \ell^{\dagger} \ell)$	2-)	validated analytically + DYNNLO
pp→W→ℓv	(to be validated (with CKM)
рр→Н	√	validated analytically
рр→үү	√	validated with 2yNNLO
$pp \rightarrow Z \gamma \rightarrow \ell^{\dagger} \ell^{-} \gamma$	√	[Grazzini, Kallweit, Rathlev, Torre '13]
$pp \rightarrow W \gamma \rightarrow \ell \nu \gamma$	√	[Grazzini, Kallweit, Rathlev '15]
pp→ ZZ	√	[Cascioli et al. '14]
pp→ ZZ →4ℓ	√	[Grazzini, Kallweit, Rathlev '15]
pp→WW	√	[Gehrmann et al. 'I4]
pp→ WW →ℓv	√	HERE: fully differential
pp→WZ	√	[Grazzini, Kallweit, Rathlev, MW '16]
рр→НН	√	[de Florian et al. '16]

WW production

Theoretical status of WW production

fixed-order:

- NNLO corrections to inclusive [Gehrmann, Grazzini, Kallweit, P. Maierhöfer, von Manteuffel, Pozzorini, Rathlev, Tancredi '14]
 - and differential cross sections [Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]
- NLO corrections to gg channel [Caola, Melnikov, Röntsch, Tancredi '15]
- NLO EW corrections [Biedermann, Billoni, Denner, Dittmaier, Hofer, Jäger, Salfelder '16]

resummation:

- NNLO+NNLL pT resummation of WW pair [Grazzini, Kallweit, Rathlev, MW '15]
- recently: NNLO+NNLL jet-veto resummation [Dawson, Jaiswal, Li, Ramani, Zeng '16]

WW pt resummation at NNLO+NNLL

[Grazzini, Kallweit, Rathlev, MW '15]

WW p_T spectrum

WW pt resummation at NNLO+NNLL

[Grazzini, Kallweit, Rathlev, MW '15]

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

- \circ all **pp→WW→** ℓ **v** ℓ '**v**' processes, including:
 - double-resonant W decays
 - * single-resonant \mathbb{Z}/γ^* decays ($pp \rightarrow \mathbb{Z}/\gamma^* \rightarrow WW^*/\ell vW \rightarrow \ell v \ell' v'$)
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma* \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma* \rightarrow \ell \nu \ell \nu)$ in SF chan

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

- \circ all **pp→WW→** ℓ **v** ℓ '**v**' processes, including:
 - double-resonant W decays
 - * single-resonant \mathbb{Z}/γ^* decays ($pp \rightarrow \mathbb{Z}/\gamma^* \rightarrow WW^*/\ell vW \rightarrow \ell v \ell' v'$)
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma* \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma* \rightarrow \ell \nu \ell \nu)$ in SF chan
- [®] HERE: different-flavour channel $pp \rightarrow WW \rightarrow ev_e μv_μ$ (for simplicity):

WW signal cuts:

```
m_{ll} > 10 \,\mathrm{GeV}, \quad \Delta R_{ll} > 0.1, \quad p_T^{\mathrm{miss}} > 15 \,\mathrm{GeV}, \quad p_T^{\mathrm{miss, \, rel}} > 20 \,\mathrm{GeV}

jet veto (anti-k_T, R = 0.4, p_{T,j} > 25 \,\mathrm{GeV}, |y_j| < 4.5)

lepton cuts (p_{T,l_1} > 25 \,\mathrm{GeV}, \, p_{T,l_2} > 20 \,\mathrm{GeV}, \, |y_{\mu}| < 2.4, \, |y_e| < 1.37 \,\mathrm{or} \, 1.52 < |y_e| < 2.47)
```

Higgs background cuts:

```
10 \,\mathrm{GeV} < m_{ll} < 55 \,\mathrm{GeV}, \quad p_{T,ll} > 30 \,\mathrm{GeV}, \quad \Delta \phi_{ll} < 1.8, \quad \Delta \phi_{ll,\nu\nu} > \pi/2, \quad p_T^{\mathrm{miss}} > 20 \,\mathrm{GeV} jet veto (anti-k_T, R = 0.4, p_{T,j} > 25 \,\mathrm{GeV}, |y_j| < 4.5)
lepton cuts (p_{T,l_1} > 22 \,\mathrm{GeV}, \, p_{T,l_2} > 10 \,\mathrm{GeV}, \, |y_{\mu}| < 2.4, \, |y_e| < 1.37 \,\mathrm{or} \, 1.52 < |y_e| < 2.47)
```

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

top-quark contamination

how to avoid tt/Wt contributions in computation:

four-flavour scheme (4FS)

- diagrams with final-state b-quarks finite subgroup (b massive)
- remove top-quark contamination by dropping such diagrams
- default choice in our computation

five-flavour scheme (5FS)

- b-quark contributions not finite (b massless, clustered in jets)
- use resonance structure with respect to top-quark width:

$$\sigma = A \cdot \frac{1}{\Gamma_t^2} + B \cdot \frac{1}{\Gamma_t} + C$$

- fit coefficients for different Γ_t \longrightarrow C: top-subtracted c.s.
- used as cross check (agreement for fiducial rates ~1%)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates

fiducial rates (WW cuts

σ [fb]	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	$778.99 (8)_{-6.7\%}^{+5.7\%}$	$147.23(2)^{+3.4\%}_{-4.4\%}$	$233.04(2)_{-7.6\%}^{+6.6\%}$
NLO	$623.47(6)^{+3.6\%}_{-2.9\%}$	$1205.11(12)^{+3.9\%}_{-3.1\%}$	$153.07(2)^{+1.9\%}_{-1.6\%}$	$236.19(2) {}^{+2.8\%}_{-2.4\%}$
NLO'+gg	$655.83(8)^{+4.3\%}_{-3.3\%}$	$1286.81(13)^{+4.8\%}_{-3.7\%}$	$166.41(3)_{-1.3\%}^{+1.3\%}$	$267.31(4)^{+1.5\%}_{-2.1\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1370.9(11) \begin{array}{c} +2.6\% \\ -2.3\% \end{array}$	$164.1 \ (1)_{-0.8\%}^{+1.3\%}$	$261.5(2) \begin{array}{c} +1.9\% \\ -1.2\% \end{array}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

LO $0.34608(7)_{-0.7\%}^{+0.6\%}$ $0.29915(6)$ NLO $0.24552(5)_{-4.7\%}^{+4.4\%}$ $0.19599(4)$ NLO'+gg $0.25374(7)_{-3.7\%}^{+3.5\%}$ $0.20773(5)$	V	$_{ m uts}/\sigma^{ m inclusive}$	$A = \sigma^{\rm cuts}/2$
NLO'+ gg 0.25374(7) $_{-3.7\%}^{+3.5\%}$ 0.20773(5) NNLO 0.2378(4) $_{-0.9\%}^{+1.3\%}$ 0.1907(3)	$egin{array}{c} +0.8\% \\ -1.0\% \\ +4.4\% \\ -4.7\% \\ +3.2\% \\ -3.1\% \\ +1.2\% \\ -0.9\% \\ \hline \end{array}$	LO NLO O'+gg	NLO NLO'-

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates

fiducial rates (WW cuts

σ [fb]	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	$778.99 (8)_{-6.7\%}^{+5.7\%}$ +55%	$147.23(2)^{+3.4\%}_{-4.4\%}$	$233.04(2)_{-7.6\%}^{+6.6\%}$
NLO	$623.47(6)^{+3.6\%}$	+5.2% $1205.11(12)^{+3.9\%}_{-3.1\%}$ +6.8% $1286.81(13)^{+4.8\%}_{-3.7\%}$	$153.07(2) {}^{+1.9\%}_{-1.6\%}$ $166.41(3) {}^{+1.3\%}_{-1.3\%}$	$236.19(2)^{+2.8\%}_{-2.4\%}$
NLO'+gg	$ 655.83(8) _{-3.3\%}$	+5.2% 1286.81(13) +4.8% -3.7% +6.8%	$^{\circ}$ 166.41(3) $^{+1.3\%}_{-1.3\%}$	$267.31(4)_{-2.1\%}^{+1.5\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$+5.3\%$ $1370.9(11)$ $^{+2.6\%}_{-2.3\%}$ $+6.5\%$	$6164.1 \ (1)^{+1.3\%}_{-0.8\%}$	$261.5(2) \begin{array}{c} +1.9\% \\ -1.2\% \end{array}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

acceptances (WW cuts)

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$0.29915(6)_{-1.0\%}^{+0.8\%}$ $0.19599(4)_{-4.7\%}^{+4.4\%}$ $0.20773(5)_{-3.1\%}^{+3.2\%}$
NLO	$0.24552(5)_{-4.7\%}^{+4.4\%}$	$0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.1907(3) {}^{+1.2\%}_{-0.9\%}$

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates

fiducial rates (WW cuts

LO $425.41(4)_{-3.6\%}^{+2.8\%}$ +47% $778.99(8)_{-6.7\%}^{+5.7\%}$ +55% $147.23(2)_{-4.4\%}^{+3.4\%}$ +4% $233.04(2)_{-7.6\%}^{+6.6\%}$ +1	σ [fb]	8 TeV	$13\mathrm{TeV}$	$8\mathrm{TeV}$	$13\mathrm{TeV}$	
LO $425.41(4)_{-3.6\%}^{+2.8\%}$ +47% $778.99(8)_{-6.7\%}^{+5.7\%}$ +55% $147.23(2)_{-4.4\%}^{+3.4\%}$ +4% $233.04(2)_{-7.6\%}^{+6.6\%}$ +100 $623.47(6)_{-2.9\%}^{+3.6\%}$ +5.2% $1205.11(12)_{-3.1\%}^{+3.9\%}$ +6.8% $153.07(2)_{-1.6\%}^{+1.9\%}$ +8.7% $236.19(2)_{-2.4\%}^{+2.8\%}$ +100 $166.41(3)_{-1.3\%}^{+1.3\%}$ +8.7% $166.41(3)_{-1.3\%}^{+1.3\%}$ +8.7% $166.41(3)_{-1.3\%}^{+1.3\%}$ +100 $166.41(3)_{-1.3\%}^{+1.$	LO NLO NLO'+ gg	425.41(4) +2.8% -3.6% 623.47(6) +3.6% -2.9% -2.9% -3.3% +5	7% $778.99 (8)_{-6.7\%}^{+5.7\%}$ +5 $1205.11(12)_{-3.1\%}^{+3.9\%}$ +6 $1286.81(13)_{-3.7\%}^{+4.8\%}$ +6	55% $147.23(2) {}^{+3.4\%}_{-4.4\%}$ 153.07(2) ${}^{+1.9\%}_{-1.6\%}$ 166.41(3) ${}^{+1.3\%}_{-1.3\%}$	+4% $233.04(2) {}^{+6.6\%}_{-7.6\%}$ + 8.7% $236.19(2) {}^{+2.8\%}_{-2.4\%}$ + 1.5% $267.31(4) {}^{+1.5\%}_{-2.1\%}$ + 1.0%	1.3% 13%

NLO'+gg = NLO+gg BOTH with NNLO PDFs

----- acceptances (WW cuts)

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$\begin{array}{c c} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{array}$	$0.29915(6)_{-1.0\%}^{+0.8\%}$ $0.19599(4)_{-4.7\%}^{+4.4\%}$ $0.20773(5)_{-3.1\%}^{+3.2\%}$
NLO	$0.24552(5)_{-4.7\%}^{+4.4\%}$	$0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$0.2378(4) \begin{array}{c} +1.3\% \\ -0.9\% \end{array}$	$0.1907(3) \begin{array}{l} +1.2\% \\ -0.9\% \end{array}$

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive rates

fiducial rates (WW cuts

LO $425.41(4)_{-3.6\%}^{+2.8\%}$ +47% $778.99(8)_{-6.7\%}^{+5.7\%}$ +55% $147.23(2)_{-4.4\%}^{+3.4\%}$ +4% $233.04(2)_{-7.6\%}^{+6.6\%}$ +1	σ [fb]	8 TeV	$13\mathrm{TeV}$	$8\mathrm{TeV}$	$13\mathrm{TeV}$	
LO $425.41(4)_{-3.6\%}^{+2.8\%}$ +47% $778.99(8)_{-6.7\%}^{+5.7\%}$ +55% $147.23(2)_{-4.4\%}^{+3.4\%}$ +4% $233.04(2)_{-7.6\%}^{+6.6\%}$ +100 $623.47(6)_{-2.9\%}^{+3.6\%}$ +5.2% $1205.11(12)_{-3.1\%}^{+3.9\%}$ +6.8% $153.07(2)_{-1.6\%}^{+1.9\%}$ +8.7% $236.19(2)_{-2.4\%}^{+2.8\%}$ +100 $166.41(3)_{-1.3\%}^{+1.3\%}$ +8.7% $166.41(3)_{-1.3\%}^{+1.3\%}$ +8.7% $166.41(3)_{-1.3\%}^{+1.3\%}$ +100 $166.41(3)_{-1.3\%}^{+1.$	LO NLO NLO'+ gg	425.41(4) +2.8% -3.6% 623.47(6) +3.6% -2.9% -2.9% -3.3% +5	7% $778.99 (8)_{-6.7\%}^{+5.7\%}$ +5 $1205.11(12)_{-3.1\%}^{+3.9\%}$ +6 $1286.81(13)_{-3.7\%}^{+4.8\%}$ +6	55% $147.23(2) {}^{+3.4\%}_{-4.4\%}$ 153.07(2) ${}^{+1.9\%}_{-1.6\%}$ 166.41(3) ${}^{+1.3\%}_{-1.3\%}$	+4% $233.04(2) {}^{+6.6\%}_{-7.6\%}$ + 8.7% $236.19(2) {}^{+2.8\%}_{-2.4\%}$ + 1.5% $267.31(4) {}^{+1.5\%}_{-2.1\%}$ + 1.0%	1.3% 13%

NLO'+gg = NLO+gg BOTH with NNLO PDFs

acceptances (WW cuts)

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$	
LO NLO NLO'+ gg	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.29915(6)_{-1.0\%}^{+0.8\%}$ $0.19599(4)_{-4.7\%}^{+4.4\%}$ $0.20773(5)_{-3.1\%}^{+3.2\%}$)+34%)+6%
NLO +gg NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.20773(3)_{-3.1\%}^{-3.1\%}$ $0.1907(3)_{-0.9\%}^{+1.2\%}$	-8.2%

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

fiducial rates (Higgs cuts)

	$\sigma_{ m fiducial}({ m H-cuts}) [{ m fb}]$		$\sigma_{\rm fiducial}({\rm H-cuts}) [{\rm fb}] \qquad \qquad \sigma/\sigma_{\rm NLO} - 1$	
\sqrt{s}	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$45.923(4)^{+4.0\%}_{-5.0\%}$	$71.164 \ (7)^{+7.2\%}_{-8.2\%}$	- 4.4%	- 2.6%
NLO	$48.045(5)^{+1.9\%}_{-1.7\%}$	$73.085 \ (6)_{-2.4\%}^{+2.7\%}$	0	0
NLO'	$49.318(7)^{+1.7\%}_{-1.6\%}$	$75.578(11)_{-2.2\%}^{+2.5\%}$	+ 2.7%	+ 3.4%
NLO'+gg	$53.496(8)^{+2.0\%}_{-1.5\%}$	$85.231(12)^{+2.5\%}_{-2.5\%}$	+11.3%	+16.6%
NNLO	$52.30(4) \begin{array}{c} +1.6\% \\ -1.0\% \end{array}$	$82.32(12) \begin{array}{c} +2.4\% \\ -2.6\% \end{array}$	+ 8.9%	+12.6%

acceptances (Higgs cuts)

	$\epsilon = \sigma_{\text{fiducial}}(\text{H}-$	$-\mathrm{cuts})/\sigma_{\mathrm{inclusive}}$	$\epsilon/\epsilon_{ m NI}$	$L_{0} - 1$
\sqrt{S}	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$0.10795 (2)_{-1.4\%}^{+1.2\%}$	$0.09135 (2)_{-1.7\%}^{+1.5\%}$	+40.1%	+50.6%
NLO	$0.07706 (2)_{-4.6\%}^{+4.3\%}$	$0.06065 \ (1)_{-4.5\%}^{+4.3\%}$	0	0
NLO'+gg	$0.08157 (2)_{-3.1\%}^{+3.1\%}$	$0.06623 \ (2)_{-2.5\%}^{+2.7\%}$	+ 5.9%	+ 9.2%
NNLO	$0.07575(11)_{-0.8\%}^{+1.2\%}$	$0.06005(14)_{-0.9\%}^{+1.1\%}$	- 1.7%	- 1.0%

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive (8 TeV)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

WW signal cuts (8 TeV)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

WW signal cuts (left: 8 TeV, right: 13 TeV)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

Higgs background cuts (13 TeV)

Including the Higgs in WW predictions

Current state-of-the-art approach:

- Our computation (setting finite m_H) allows to consistently include the Higgs at $O(\alpha_S^2)$
- [®] Higher-order corrections to the squared H→WW(→IIνν) amplitude with several tools:
 - e.g.: HNNLO [Catani, Grazzini '07; Grazzini '08; Grazzini, Sargsyan '13]

[®] Missing: interference effects between WW and H→WW at O($α_S^3$) (doable but not available)

Summary

WW transverse-momentum spectrum resummed at NNLO+NNLL

- differential in the born-level phase-space (eg, in the rapidity of the WW pair)
- evident: importance of both perturbative and logarithmic corrections

WW fully-differential cross section computed at NNLO

- full process: pp→IIVV
- includes: all topologies (with W, Z, γ , H), off-shell effects and spin correlations
 - realistic computation of WW cross section in the fiducial volume
- large NNLO corrections to acceptance of the fiducial cross section
- important NNLO effects on shapes of distributions

Outlook

- soon: public version of MATRIX (a fully-differential NNLO(+NNLL) library)
- NLO QCD corrections to loop-induced gg channel
- NLO EW effects

THE SUCHES THE STEELING TOWNS OF THE SUCH THE STEELING TOWNS OF THE STEELING THE ST PORTAGRAM AND REPORT OF THE STANKS DESCRIPTION OF A STANKS OF A ST AGARAWALV ZA A NO. ewi abanna #

XIII JU-TAAUH O'YE UKESE MIN W.

ZYAPSA, ""> "L YEUAHS KX MINE-EI

ZYAPSA, ""> "L YEUAHS KX MINE-EI

CHOIS "* C+" O'N ARXIS MOY COU

SE VE-#INTO IUU E73-000 FEWI ("-ab)

I VAD A GI 6 214-32" TANKA K

COUSSACRAVEEN "A AHIGG SA IU

ENS-2#FONIZEOUTO, NIO-*4-X MINES

ENS-2#FONIZEOUT T. C.SEC MY TOTE (APECISO AL PER TERIAL) C. TETT DESCRIPTION (C. P. M. C. SEC MY TOTE (APECISO AL PER TERIAL SELECTION AND SELE rskao kese salat 3) b. vjiterk*E bict eAfrice Y "Mgap" ae 6H/ wyd (c cacou 237 cAc Hat."—wike I haterted, of alternative and the argument and alternative and the argument of the κεόδ 0/8°\c2 in |Sfe;{≈ 11ΣDC ce NTMB 90 AM Ship STinas That it postvill the "idgi E-1 9586-1502 Tyha YCJN'U shepsivill the "idgi Yevs "6ECUTY> 657254yi sjilaa" | ткухоб 6#I-!LΦ_ пыны¶ 216)10552_ Joy S CONTENATS b GSE-Trong 7/1025 30:5 1.75 C ĕ [34] \E) = yn.@(...p44. E/..."> @e£3¢B0> Sews OSAQ BIFF xd) 01 g",91] 4x 979991 TANOS NATION Jphi * ... Pa ... Do

Thank You !

Back Up

30

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2} \right]_{\mathrm{f.o.}+\mathrm{l.a.}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2} \right]_{\mathrm{f.o.}} - \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2} \right]_{\mathrm{f.o.}} + \left[\frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2} \right]_{\mathrm{l.a.}}$$

$$\begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2} \end{bmatrix}_{\mathrm{f.o.}+\mathrm{l.a.}} = \begin{bmatrix} \frac{\mathrm{d}\sigma}{\mathrm{d}p_T^2} \end{bmatrix}_{\mathrm{f.o.}} - \begin{bmatrix} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2} \end{bmatrix}_{\mathrm{f.o.}} + \begin{bmatrix} \frac{\mathrm{d}\sigma^{(\mathrm{res})}}{\mathrm{d}p_T^2} \end{bmatrix}_{\mathrm{l.a.}}$$

WW fully differential at NNLO

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

stability of r_{cut}= p_T/m_{ww} dependence

WW fully differential at NNLO

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

inclusive: distributions (8 TeV)

WW fully differential at NNLO

[Grazzini, Kallweit, Pozzorini, Rathlev, MW '16]

WW signal cuts: distributions (8 TeV)

