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Introduction

Unquestionably, the inflationary era is of profound importance for the description of the
primordial cosmological evolution of our Universe [1-3], and many theoretical frameworks
can successfully incorporate various version of this early-time acceleration [4-9]. Most
common is the scalar-tensor description, in which a scalar field slowly rolls a nearly plateau
like potential, however modified gravity in various forms can describe an inflationary era.
With regards to the modified gravity description of inflation, it is also possible to describe
early and late-time acceleration within the same theoretical framework [10].

One questionable feature of the scalar field description of inflation, is that it is not possible
to describe non-Gaussianities. The existence of non-Gaussianities may be verified by
future observations of the primordial density perturbations. In some sense, there are
debatable arguments against the existence of non-Gaussianities (see Ref. [11] for a review
on non-Gaussianities), that to our opinion are philosophically aligned with the Occam’s
razor way of thinking, that is, the non-correlation of the primordial modes is the simplest
answer, and therefore non-Gaussianities should be absent in the power spectrum.
However, this is a unilateral approach in the scientific problem at hand, and a theory that
aims to describe successfully the Universe should be robust against any opposing future
observation. In this context, it was shown in Refs. [12—28] that if the slow-roll condition is
modified, non-Gaussianities can be predicted even in the context of scalar-tensor theories
of inflation. Also in Refs. [23, 24, 28] several transition between constant and slow-roll eras
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Introduction

were successfully described. The implications of the constant-roll condition in F(R) gravity
were firstly studied in Ref. [25], and also in a later publication [29], an alternative approach
was considered.

In this paper we shall investigate the implications of a constant-roll inflationary era in the
context of f(T) teleparallel gravity. The theoretical framework of f(T) teleparallel gravity
has proved to be quite useful in cosmological and also astrophysical applications, and for
recent reviews we refer to [9, 30]. Particularly, late-time acceleration in f(T) gravity was
studied in Refs. [31-44], and also inflationary and bouncing cosmology scenarios were
studied in [45-54]. Also various astrophysical aspects of f(T) gravity were addressed in
Refs. [55-60] and in addition, the thermodynamics of f(T) and other modified gravities
were studied in Ref. [61]. In view of the various successful description of f(T) gravity in
both at a local and global scales in the Universe, with this work we aim to investigate
thoroughly the implications of a constant-roll condition in f(T) gravity. We shall assume a
scalar constant-roll condition holds true, and we shall perform an in depth analysis of the
various implications on the f(T) inflationary era. Particularly, we shall demonstrate how the
cosmological equations are altered in view of the constant-roll condition, and we shall
show that the resulting formalism is actually a reconstruction mechanism that enables us to
either, fix the cosmological evolution and find the corresponding f(T) gravity which realizes
the given cosmological evolution, or to fix the f(T) gravity and seek for the Hubble rate
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Introduction

solution that corresponds to this f(T) gravity. In both cases, we shall assume the existence
of a scalar field which acts as the inflaton, and in both cases we shall calculate the scalar
potential that corresponds to the constant-roll scenario under study. In the case that the
f(T) gravity is fixed, we shall also calculate the cosmological indexes corresponding to the
power spectrum of the primordial curvature perturbations, and particularly, the spectral
index and the scalar-to-tensor ratio, and accordingly we confront the results with the latest
Planck [62] and BICEP2/Keck Array data [63]. As we will show, the parameter that
guantifies the constant-roll era, enters to the final expressions of the observational indices.

This paper is organized as follows: In section 2 we briefly review the essential features of
f(T) teleparallel gravity and in section 3 we present some characteristic results from the
minimally coupled scalar-f(T) theory, that will be needed in the sections to follow. In
section 4 we present the reconstruction mechanism of constant-roll f(T) gravity, and we
discuss how the constant-roll condition alters the formalism of teleparallel gravity. In
section 5, we fix the Hubble evolution and we investigate which teleparallel gravity and
which potential can generate such an evolution. Also we perform a thorough phase space
analysis of the cosmological dynamical system, discussing the physical meaning of the
resulting fixed points. In section 6 we fix the functional form of the f(T) gravity and we
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Introduction

investigate which Hubble evolution this generates, and also we calculate in detail the

observational indices of the corresponding cosmological theory. Finally the results follow in
the end of this paper.
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Essential Features of Teleparallel Geometry

Before we get into the core of this paper, let us briefly present some fundamental features
of teleparallel geometry and gravity, for details we refer the reader to the reviews [9, 30].
We consider a 4-dimensional smooth manifold (M, h,), with h, (a = 1,--- , 4) being four
independent vector (tetrad) fields defined globally on M, with the last condition actually
being the realization of absolute parallelism. The tetrad vector fields satisfy the tensor
relation h,*h?, = &, and also h,*h?, = 6%, where (u = 1,-- -, a) are the coordinate
components of the a-th vector field h,. By using the tetrad field, we can construct a
curvature-less (Weitzenbdck) linear connection of the following form

M, = hy"0,h*, = —h?,0,h,". Notably, the tetrad fields fulfill the teleparallel condition
V,h* = 0, where the operator V, is the covariant derivative with respect to the
Weitzenbdck connection we defined above.

Also, the tetrad field can be used to construct the metric tensor on the manifold M by using
G = Nab ha#h”v with 74, being an induced Minkowski metric on the tangent space of M.
The inverse metric is equal to g** = n?® h,*hp* and subsequently the Levi-Civita symmetric

connection is F“,,V = %g‘w (0v9us + 8uGvo — 95-Guv) can be defined, and in effect, a
Riemannian geometry can be defined. The torsion and the contorsion tensors of the
Weitzenbdck connection are defined as follows, 7%, = '*,, — ", = h,* (9,h?, — 8,h?,)

and K%, = F‘Yw - F‘YW = h,* %yha,‘., where the covariant derivative %V is defined with

respect to the Levi-Civita connection. The torsion tensor can be written in terms of the
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Essential Features of Teleparallel Geometry

contorsion tensor as Ty, = Ky — Koy, While the inverse is equal to

Koy = 3 (Tvap + Towy = Tuav), Where T = gy TS, and Ko = ey K-

In teleparallel geometry, the torsion scalar is defined as follows,

T=2T%To + 3T Tuoy — T*T,, where T* = T,*. The torsion scalar can be written in
a compact form in the following way,

T=T,5", 2.1)

where the superpotential tensor S,*” is defined as follows,
J L 1 (0 TPy v TBu
Sar - E(K n+6nT ﬁ_énT ﬁ)’ (22)

which is skew symmetric in the last pair of indices. The teleparallel torsion scalar is
equivalent to the Riemannian curvature scalar R, up to a total derivative term.
Consequently, when T is used in a Lagrangian instead of R in Einstein-Hilbert action, the
resulting field equations are equivalent, and this is actually the Teleparallel Equivalent of
General Relativity (TEGR) theory of gravity.
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Inflaton Minimally Coupled to f(T) Teleparallel Gravity

In the context of f(T) teleparallel gravity, the most successful inflationary theories are
those for which the inflaton ¢ is minimally coupled to gravity, with the action being,

S= fd“XIhl (Lo +Ly). (3.1)
where |h| = /=g = det(h,?). The scalar field part of the Lagrangian in Eq. (3.1), namely
L,, is defined as follows,

1
Ly = 55;445 ¢ - V(e), (3.2)

where 0" = g"”d,. By varying L, with respect to the metric, or equivalently with respect to
the tetrad fields [64], enables us to define the stress-energy tensor as follows,

¢, 1 (5£¢
zﬂ = hall (_F 5hav

)= 60~ 5,.L,. (33)

which describes the matter content of the theory. We assume the stress-energy tensor to
have a perfect fluid form, so it can be expressed as follows,

¢
z,uv = p¢uﬂuv + pq)(UIuUV + gpv)a (34)
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Inflaton Minimally Coupled to f(T) Teleparallel Gravity

where U* is the 4-velocity unit vector of the fluid. In most cosmological applications, where
a massless scalar field ¢ with potential V(¢) is used, the unit vector is chosen to be normal
to spacelike hypersurfaces defined by ¢ = constant. In effect, the stress-energy tensor
(3.4) defines the scalar field density p, and the corresponding pressure p, in its rest frame,
as follows,

1. 1.
po =590+ V(9). po=58"-V(e). (35)

In the above, we ignored an extra term which is generated by existing anisotropies.
In the spirit of f(R)-gravity, in the context of which, one replaces R by an arbitrary function
f(R) in the Einstein-Hilbert action, the TEGR has been generalized by replacing T by an
arbitrary function f(T) [32, 33, 39, 65]. In the natural units (c =7 = kg = 1), the f(T)
Lagrangian is equal to,
M2

Ly =2 KT), (3.6)
where M, = 2.4 x 10*® GeV is the reduced Planck mass, which can be related to the
gravitational constant G via M, = 1/ V8nG = 1/«. Upon varying the action containing the
Lagrangian Ly, with respect to the tetrad fields, we obtain the tensor,

. 16Lg\ M . (16f(T)
H vV __ ha - _ ha -
(h 5hav) h sha,

="

(3.7)

w =y
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Inflaton Minimally Coupled to f(T) Teleparallel Gravity

Upon rescaling, the tensor above takes the form H,” = %MI;ZI:I#V, and in effect we have,

v v hl‘a v Y 1 v
H) = S,/0,Tfr + Tap (hS:”") - T,8,"° | fr + Zdﬂf(T)’ (3.8)
_di(T) _ d?H(T) . . .
where fr and frr, stand for fr = == and frr = —7* respectively. By varying the action

(3.1) with respect to the tetrad fields, using Egs. (3.7) and (3.3), gives the following field
equations of f(T) teleparallel gravity,

HY = SM2 8, (3.9)
or equivalently, by substituting from Eg. (3.8), we obtain,
v 1 Nl , 1, M2 o,
Sa" 0, Tfrr + Ea,,(hsa” ) — h T#,0S." | fr + Zhaf(T) = Thgzﬂ , (3.10)
It is clear that the general relativistic limit is recovered by setting f(T) = T. We will assume

that the background metric is a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,
with line element,

ds® = dt* — a(t)?s;dx' dx, (3.11)
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Inflaton Minimally Coupled to f(T) Teleparallel Gravity

where a(t) is the scale factor of the Universe. Thus, the vierbein may take the following
diagonal form,

h,® = diag (1, a(t), a(t), a(t)) . (3.12)
This directly relates the teleparallel torsion scalar (2.1) to Hubble rate as follows,

T = -6H?, (3.13)

where H = a/a is Hubble rate, and the “dot” denotes differentiation with respect to the
cosmic time t. Inserting the vierbein (3.12) into the field equations (3.10) for the scalar field
matter fluid (3.4), the modified Friedmann equations of the f(T)-gravity are,

M3 2
0o - [f(T) + 12H7f7], (3.14)
2

M; o g2
po = = [f(T)+4@H + F)fr - 48HHfrr]. (3.15)

Independently from the above equations, one could choose an equation of state to relate
py and p,. Here, we choose the simple barotropic case p; = p,(p,). Generally, any
modified theory of gravity should be recognized as a correction of the standard general
relativistic gravity, so it is convenient to transform from the matter frame, we have been
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Inflaton Minimally Coupled to f(T) Teleparallel Gravity

using, to the effective frame, which yields Einstein’s gravity, in addition to the higher order
f(T) teleparallel gravity. So we rewrite the modified Friedmann equations in the case of
f(T)-gravity, as follows,

M2 M2
H = (oo +pr) = —5per (3.16)
2H+3H? = —M;?(ps + pr) = —M,?Per. (3.17)

In this case, the density and pressure of the torsional counterpart of f(T) are defined by,

MZ

pr = é%mﬂ—r—ﬂny (3.18)
M3 £(T) - Tfy + 2T?f

pr = 2% (T) = Tfr +2T"frr (3.19)
2 fT+2TfTT

At the GR limit (f(T) = T), we have pr = 0 and pr = 0. In the barotropic case, the torsion
will have an equation of state,
. & . (f(T) - 2TfT)(fT + 2TfTT - 1)

T

(3.20)
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Inflaton Minimally Coupled to f(T) Teleparallel Gravity

To fulfill the conservation law, when the scalar field and the torsion are minimally coupled,
we have the following continuity equations,

po+3H(ps +ps) = 0O, (3.21)
o7 +3H(pr +pr) = O. (3.22)

Also the effective equation of state (EoS) parameter is defined as follows,

H

_ . 2
Wetf = — = — _§ﬁ

(3.23)
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Slow-roll and Constant-roll Inflation in f(T) Teleparallel

Gravity

In this section we shall investigate the qualitative and quantitative consequences of a
constant-roll inflationary era in f(T) teleparallel gravity.

It is a known fact that the modification of the Friedmann equations due to f(T) gravity, can
be written as a one-dimensional autonomous system of the form H = f—I(H) =¥ (H), fora
general barotropic equation of state [66]. In this case, it is more convenient to use the
Hubble rate H as an independent variable instead of the torsion scalar T. Using Eq. (3.13),
the modified Friedmann equations (3.14) and (3.15) can be written as follows,

M?
Py = %(f—Hf’), (4.1)
M2 1. M2,
P 2 7 p 17
= —Llf-Hf -Zhaf|= LA - 4.2
Py 2( 3 ) 5 Py (4.2)

where f = f(H), f' = % and f’ = g—;;. Interestingly, Eq. (4.2) shows that the Hubble
parameter does not only decrease as in the GR limit, but it can also increase without
violating the weak energy condition p, + ps > 0. In particular, we have H > 0 with f” > 0,

while H < 0 with f” < 0. The last case includes the particular value f” = —12 which
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Slow-roll and Constant-roll Inflation in f(T) Teleparallel

Gravity

produces the GR limit. By using Eqg. (3.5), we obtain the inflaton’s kinetic term and the
scalar potential,

MFZ) f f/ _ ¢2

> (f-Hf") = >t V(8), 4.3
M2 . .
LA = ¢ (4.4)

6

Also, the continuity equation (3.21) is nothing but the Klein-Gordon equation of motion for
the inflaton in the FLRW background,

G+ 3Hb + Z—Z —o, (45)

which also can be obtained directly by varying the inflaton Lagrangian L,, appearing in Eq.
(3.2), with respect to the scalar field ¢. In the context of the slow-roll inflation
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Slow-roll and Constant-roll Inflation in f(T) Teleparallel

Gravity

approximation, two conditions have been imposed to the dynamical variables, firstly the
condition which guarantees an accelerated expansion phase,

1.,

59 < V(9), (4.6)

and secondly, the condition which makes the duration of the inflationary era prolonged,
which is,

¢l <

%L 4.7)

Substituting Egs. (4.4), (4.6) and (4.7) into Eq. (4.5), it is easy to show that the slow-roll
potential in terms of the f(T) gravity can be obtained as follows,

MZ
V' = ——2Hf", (4.8)
2
so by integrating we get,
MZ
wm=w+§v—wy (4.9)

Nashed et al. (arXiv: 1710.00682) Constant-roll Inflation in f(T) Gravity 17-21 December 2017



Slow-roll and Constant-roll Inflation in f(T) Teleparallel

Gravity

In the GR limit, that is when f = —6H?, the above equation reproduces the well-known
relation

V(¢) = Vo + 3MSH. (4.10)
It is useful to parameterize the inflationary Universe by defining the first Hubble slow-roll
index [9] and its running

dinH/dt dine,/dt

€ = H 5 €nt1 = H (411)

Since H is almost constant during slow-roll inflationary era, the first slow-roll index is

e < 1. However, the slow-roll inflation particularly requires also €, to be small, that is,

len] < 1. In some other inflationary models, the slow-roll conditions have been modified,
and replaced by a condition in which the term |¢| is no longer negligible. This is known as
the so-called ultra slow-roll condition [13],

é = —3Hg¢. (4.12)

This condition has been introduced in order to produce a potential with an exact flat
plateau (4.5). It has been shown that the condition (4.12) violates the slow-roll
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Slow-roll and Constant-roll Inflation in f(T) Teleparallel

Gravity

approximation, where the running of the first Hubble slow-roll index |e,| is no longer small
[13]. This makes the ultra slow-roll models in fact to be some sort of a fast-roll inflation
model, like the ones of Ref. [17]. Interestingly enough, the ultra slow-roll inflation can
produce a scale invariant power spectrum [14]. However, the scalar (curvature)
perturbations grow on the super-horizon energy scale unlike the slow-roll inflation [14, 15]
which disfavors the ultra slow-roll condition [16].
Along the research line of the ultra slow-roll inflation, the constant-roll inflation scenario
[12—28] is a modification of the slow-roll inflation scenario, in which case the following
condition holds true,

¢ = BHg, (4.13)
where the slow-roll condition can be recovered if 8 < 1, while the ultra slow-roll is
recovered by setting 8 = —3. Remarkably, it has been shown that 8 = —3/2 is a critical
value, where the scalar perturbations grow for 8 < —% and decay for 8 > —% at the
super-horizon scale. Moreover, the first Hubble slow-roll parameter satisfies € < 1 during
the constant-roll inflation era, but its running satisfies |e,| > 1. Furthermore, in spite of
using a single inflaton in the constant-roll inflationary scenario, the local non-Gaussianity
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Gravity

consistency relation can be violated which makes the constant-roll inflation
phenomenologically distinguishable from the slow-roll scenario.

The constant roll inflation has been studied in the f(R) gravity context in two different
ways. In the first approach, the constant-roll condition (4.13) is applied to the f(R) modified
Friedmann equations [25], and in this way one can obtain the f(R) gravity which generates
a constantly rolling scalar field, or the construction a constant-roll potential for a given f(R)
gravity. Also, in extended studies, the possible transition between slow-roll and
constant-roll and also between constant-roll eras, has been investigated in Refs.

[23, 24, 28]. In the second approach, the condition F :ﬁHﬂz is considered as some sort
of generalization of the constant-roll condition, where F = df/dR; and H; and R; are
Hubble and Ricci scalar in Jordan frame [29]. In this paper, we investigate the condition
(4.13) within the framework of the f(T) teleparallel gravity.
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The Attractor Solution H(¢) and the Scalar Potential V(¢) in Constant-roll f(T) Gravity

In this section we shall present a fundamental technique that will enable us to derive the
function Hubble rate function H(¢) in the context of constant-roll f(T) teleparallel gravity.
This will also enable us to obtain the scalar potential V(¢).

Plugging H = é&g—’; in Eq. (4.4), we obtain,

M2
= ?pf”Hq), (4.14)

where H, = 4, Hyy = ZZT,'E' and also we used the fact that the second derivative of the
inflaton field with respect to the cosmic time is,

M2 .
==L [f”H¢¢ +17H | ¢. (4.15)

Then by applying the constant-roll condition (4.13), we obtain the following differential
equation,

88,

M

P
The above equation represents a modified version of the original work of the constant-roll
inflation [16] due to the contribution of the torsional counterpart of f(T) gravity. For a given

f"Hys + £ H; — =0. (4.16)
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The Attractor Solution H(¢) and the Scalar Potential V(¢) in Constant-roll f(T) Gravity

f(T) theory, we can solve Eqg. (4.16) to obtain the generating function H(¢) analytically. For
example, at the GR limit, that is when, f(H) = —6H?, the above differential equation
reduces to the simple harmonic oscillator differential equation, where H(¢) can be

obtained analytically, as a linear combination of exponentials of the form e* V#/2¢,

Since the teleparallel torsion (Hubble) can be related directly to the inflaton field, then we
have f' = f;/Hy, " = (fssHs — fsHss) /H, @and so on. In effect, the differential equation
(4.16) can be rewritten as follows,

6
H; Toos = 2Hy Hao oo+ (2H3y = Ho Hoos) T - WHSH =0, (4.17)
p

which has a general solution,

f(¢) = c3 + f(cz +a¢+ % ffqubdqb) H, do, (4.18)
9]

where ¢;, ¢; and c; are integration constants. It is clear that the ¢, term « H, acts as a
divergence term in the action (3.1). Hereafter we omit this term, and also for simplicity we
take c; = 0. For a given cosmic evolution H(¢), the above differential equation determines
the corresponding constant-roll f(T) gravity.
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The Attractor Solution H(¢) and the Scalar Potential V(¢) in Constant-roll f(T) Gravity

Turning our focus to the scalar potential, by inserting (4.14) into (4.3), the constant-roll
potential can be written as follows,

M2 MZ
V(¢) = =2 |f— HF — —2f2H2]. 4.19
@)= [ e H: (4.19)
The above equation represents a modified version of the constant-roll potential which has
been previously obtained in for example, in the context of a canonical scalar field gravity.
This can be shown clearly by taking f(H) = —6H? + F(H), in effect Eq. (4.19) becomes,

M? M2
A2 2 2142 p _ ’_ 14 "o _ 7”142
V(p) = M3[3H? - 2M2HZ| + — [F HF' — og (F" = 24)F H¢]. (4.20)

f(T) modification

In the above expression for the scalar potential, the second term on the right hand side, is
essentially the contribution of f(T) gravity in the constant-roll potential. For F(H) = 0, the
constant-roll potential takes the usual scalar tensor form appearing in the related literature.
We note that for any f(T) gravity, the constant-roll inflationary era can be quantified by
making use of Egs. (4.16) and (4.19).

Nashed et al. (arXiv: 1710.00682) Constant-roll Inflation in f(T) Gravity 17-21 December 2017 23/63



The Attractor Solution H(¢) and the Scalar Potential V(¢) in Constant-roll f(T) Gravity

Alternatively, applying the constant-roll condition (4.13) to the Klein-Gordon equation (4.5),
we obtain, )
(3+B)HH$”? + V' =0, (4.21)

. . . 2
where H here is an independent variable. Since ¢ = H¢', Eq. (4.4) becomes H¢"? = %f”.
Thus, the above differential equation takes the form,

MZ
V= —?"(3 + B)HF". (4.22)

M3
V(H) = Vo + (3 + ) [f - HF]. (4.23)

The equation (4.23) is an equivalent alternative to Eq. (4.19). However, it can be used to
reconstruct constant-roll potentials directly for a given f(T) gravity, without knowing the
generating function H(¢). Conversely, it enables us to reconstruct the f(T) gravity, which
generates a given constant-roll potential V(H). We also note that the constant-roll inflation
can be fully determined by combining Egs. (4.16) and (4.22).

In the sections to follow, we investigate some particular constant-roll inflationary models.
Our investigation is two-fold: first, we shall assume a particular constant-roll generating

function H(¢) which has been obtained in Ref. [17]. According to the f(T) contribution in
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The Attractor Solution H(¢) and the Scalar Potential V(¢) in Constant-roll f(T) Gravity

(4.16), a modified constant-roll potential will be obtained. This will eventually constrain the
constant-roll parameter 5 when the observational indices are taken into account. Second,
we shall assume a particular form of f(T) teleparallel gravity, and we shall construct the
corresponding constant-roll potential. Also, we shall examine the compatibility of the model
obtained, with the current observational data.
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Reconstruction of f(T) Gravity for Constant-roll Inflation

In this section, we shall specify the Hubble rate as a function of the scalar field H(¢), and
by using this and the reconstruction techniques we presented in the previous sections, we
shall find the scalar potential and the f(T) gravity that may generate H(¢). We assume
that H(¢) has the following form [17],

H(p) = Mcos[\/gl\%), (5.1

where M is a scale characteristic of H(¢). In order to assure the validity of the spacetime
description of the model, we assume that M < M,, otherwise, quantum gravity effects
should be also taken into account. Substituting Eq. (5.1) in Eq. (4.17), we get,

s 5 o[ {E2 ) e (22| 62

The above equation will enable us to reconstruct the corresponding constant-roll potential
V(¢) and also, it can be used to reconstruct the corresponding f(T) theory that generates

H(4).

f(g) = ~3M?
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By substituting Egs. (5.1) and (5.2) in Eq. (4.19), we obtain the scalar potential,

V(g) =

3+8 ¢
3VPM? [1 - {1 - cos(@v)}

p

aM [ M : \F¢
0 [c W—lZMp(S—&-,B)sm EVP .

(5.3)

The quantity in the second line of Eq. (5.3) corresponds to the f(T) contribution to the
cosmic evolution (5.1). For ¢; = 0, the potential reduces to the one which has been
obtained in Ref. [17]. This case matches the cosine natural inflation model [67] with a
negative cosmological constant. In Fig. 1, we show the role of the constant role parameter
[ in obtaining different patterns of the potential (5.3).
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Figure 1: possible potential patterns of Eq. (5.3): (a) For 8 < —3 the potential has
no attractor. For 8 = —3, the constant potential of the ultra slow roll model is
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achieved. For 0 < B < -3 the potential has an attractor; (b) For 8 > 0, the cosine
potential pattern is achieved where 8 determines its frequency.

Using Egs. (4.3) and (4.4), we obtain the following differential equation,

o [ HF —2V(9)

- (5.4)

Also, the constant-roll potential in the f(T) gravity is given by Eq. (4.23). Then, Eq. (5.4)
reads,
f— Hf
f//
In fact, the above equation represents a one-dimensional autonomous system, since H
can be written explicitly in terms of H. The above relation can clearly dictate the role of the
constant-roll parameter 8. As it can be easily shown, the parameter g is strongly related to
the inflaton equation of state. By assuming a linear barotropic equation of state, that is, of
the form p; = w,p,, by combining Egs. (4.3), (4.4) and (5.5), we obtain,

H=-28 = F(H). (5.5)

B = —g(lJrWd,). (5.6)
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By using Eg. (5.6), we classified all the different inflationary scenarios in Table 1.
Interestingly enough, the constant-roll inflationary scenario becomes identical to the
slow-roll, when w, = -1, in which case g = 0. Also, when the constant-roll parameter
takes positive values, then the inflaton has a phantom EoS w, < —1. It is worth mentioning
that by choosing a dynamically varying EoS, the Universe can interpolate between
different scenarios. This is an indirect approach to the transition problems studied in Refs.
[23, 24, 28].

Table 1: Classifications of possible inflationary scenarios according to Eq. (5.6).

EoS B Model Curvature perturbations
w, > 1 B<-3 Non-attractor growing
w, =1 B=-3 ultra slow-roll growing
O<wy<1 -3<B<-3/2 attractor growing
w, =0 B=-3/2 Cosh potential growing
-1<w,<0 -3/2<p<0 attractor decaying
w, = -1 B=0 slow-roll decaying
w, < -1 B>0 Cosine potential decaying
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For the model at hand, by using the inverse of Eq. (5.1), which yields ¢ = ¢(H), we can
rewrite Eq. (5.2) in terms of H as follows,

20M H
f(H) = —6H? + =2 | VM2 — H2 — 2Harccos | — | . (5.7)
M M

Thus, the constant-roll f(T) gravity imposes the constraint |H| < M < M, on the Hubble
parameter. This constraint ensures the physical consistency of the theory, since the
Hubble rate cannot exceed the Planck mass M,. The first term in Eq. (5.7) reproduces the
GR limit, while the term proportional to c;, corresponds to the f(T) gravity modification. In
effect, the differential equation of Eq. (5.5) reads,

ClM VMZ—H2+3MH2 VI\/’Z—H2
p
ClMp—6M VI\/’Z—H2 .

Obviously, the choice 8 = 0 implies that H = 0, which matches exactly the de Sitter

H=-28 (5.8)

solution of slow-roll inflation. On the other hand, the choice ¢; = 0 implies that H = BH?,
which matches exactly the standard cosmology. In this sense, the non-null values of ¢; and
3 could provide a cosmic evolution interpolating between these two cases. In Fig. 2, we
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plot different phase portraits corresponding to solutions of Eq. (5.8), for various choices of
the parameters ¢; # O and 8 # 0.
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Let us now study in some detail the phase space of the cosmological dynamical system of
Eq. (5.8). For ¢; < 0 and g8 < 0, and during the era for which H > 0, the dynamical system
has two fixed points at,

Hupper-ix = M, H -—w\/cM—i— C2M2 + 36M*
upper—fix — 5 lower—fix — 6M 1WVip 1 Vip 5

Obviously, the choice ¢; = 0 shifts the lower fixed point to be that of a Minkowski Universe
H =0, just as in the GR limit. However, the choice c¢; < 0, enforces the Universe to evolve
towards the de Sitter solution H > 0 instead of the Minkowski. Actually, the modification
that the f(T) gravity introduces to the cosmological equations, namely (5.7), makes easy to
interpret the de Sitter solution at the small H regime as late-time acceleration. In Fig. 2(a),
the plot shows that the Universe interpolates between two de Sitter phases, as the Hubble
rate decreases. In the standard model of cosmology, the Universe begins with an initial
crushing-type singularity where the Hubble rate and its derivative blow-up, that is, H — o
and H — oo at t = O finite time. Interestingly enough, our model imposes an upper bound
for the Hubble parameter to be Hp,« = M, which can be chosen to be consistent with a

Nashed et al. (arXiv: 1710.00682) Constant-roll Inflation in f(T) Gravity 17-21 December 2017 33/63



Analysis of the Phase Space

maximum energy density at the Planck scale. Although, this maximum value of Hubble
rate is at a fixed point, this can be reached at a finite time, which is,

M
dH -
t = f F = finite, Hiower—fix < Hi < M. (5.9)
H,

i
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Figure 2: Possible cosmic evolutions of the phase portrait (5.8); (a) For ¢; <0,
H > 0, and 8 < 0: The universe interpolates between two de Sitter (fixed points)
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spaces, instead of big bang initial singularity there is type IV de Sitter state; (b)
For ¢; > 0 and 8 < 0: The universe interpolates between two sudden (type II)
singularities where junction conditions are applicable in this model, which leads to
a cyclic universe.

In fact, at the upper fixed point the slope of the phase portrait Z_Z diverges which indicates
the presence of a finite-time singularity of Type IV at that point [52, 68—70]. Alternatively,
from Eq. (5.8), it can be shown that at the upper fixed point H = M = finite, H = 0 = finite
but H diverges. In this case, we call this fixed point a de Sitter of Type IV. In conclusion, the
model replaces the initial big bang singularity with Type IV de Sitter singularity. As it is
clear from Fig. 2(a), at the large Hubble rate regime, the Universe undergoes an
accelerating expansion (unshaded region) at early-time, and also it exits into a FRW
deceleration era (shaded region). The Hubble rate value at the graceful exit time instance,
can be identified as the cutting point of the phase portrait with the zero acceleration curve,
that is, when H = —H2. For B = -2, the phase portrait matches exactly the radiation phase
portrait of standard Big Bang cosmology. This feature is important in order to ensure a
successful thermal history. In addition, at the small Hubble rate regime, the phase portrait
cuts the zero acceleration curve once more towards a future de Sitter fixed point H,, and
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this fixed point is reached asymptotically. In effect the Universe is free from any future finite
time singularities. At the second cutting point, the Hubble rate value can be chosen as

Hy ~ 100 — 120 km/s/Mpc, so at a redshift z;, ~ 0.6 — 0.8, in order to be comparable with
the ACDM model at late times.

In summary, our model can provide a unified cosmic history of the early and late-time
acceleration eras. Also, the FRW decelerated phase is compatible with the standard
cosmology. Moreover, the late-time acceleration, compatible with ACDM model, is realized
without using a cosmological constant.
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Figure 3: The evolution of the f(T) gravity, Eq. (5.10). At large T, the theory reduces to
the TEGR limit. However, at small T, the theory deviates from the TEGR limit. In this Fig.
we take M = 1 and M, = 1.
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Now let us discuss another interesting solution of our dynamical system, and for ¢; > 0,
the fixed points of (5.8) are H;, = +M. The phase portraits of the ¢; > 0 case are given in
Fig. 2(b). We consider the more physically appealing scenario 8 < 0, where the Universe
isinthe H<0 regime and trapped between two singularities at

\[36M¢ — cZM?

6M

Hsr = £

At these points, the Hubble parameter is finite but H diverges. Therefore, we conclude that
the Universe has singularities of type Il at these points. However, the geodesics are well
behaved, whereas the first derivative of the scale factor is finite and subsequently the
Christoffel symbols are regular. In this scenario, junction conditions in f(T) gravity can be
applied at Hs. and a cyclic Universe can be obtained in principle [71, 72].

Now let us turn our focus on the f(T) gravity that generates the cosmic evolution (5.1), so
by substituting Eq. (3.13) in (5.7), we obtain,

f(T)=T+ \/gq,c,/’p [\/GMZ +T- —6Tarccos( G_I\?lT]} (5.10)
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It is clear that the GR limit is recovered by setting ¢; = 0. It is interesting to note that there
is no B-dependence in the resulting f(T) gravity. Also, as it can be seen from Fig. 3, the
f(T) theory reduces to the GR limit at large T and therefore, the deviation of the theory at
hand from the Einstein-Hilbert case will actually occur at late times.
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In this section, we shall fix the functional form of the f(T) gravity and we shall investigate
which constant-roll potentials does the f(T) gravity generates. We consider the power-law
f(T) gravity of the form,

H(T) = TO(TTO) . (6.1)

Substituting Eqg. (6.1) in Egs. (4.17) and (4.19), we obtain,

1
B(n—1)*(¢ — ¢o)* |2*D
H(¢) = Ho|————"— , 6.2
(¢) o[ 2 M2(L— 2n) (6.2)
and also,
~17(0 —~go)’ |
v 2n-1)(3 + pene [FZ V(@ = do)"| 7 6.3
(0) = Vo-+ (an- )3 + i |00 ©3)
It is clear that V(¢) = V, = constant and for simplicity, we take V = 0 at ¢ = ¢, and
hence Vy = 0 and ¢o = 0. However, by substituting from (6.1) in the constant-roll
differential equation (5.5), we get,
n _n
H(t) = T a(t) = ai(Bt —nt;) 7, (6.4)
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where a; and t; are integration constants. Notably, from Egs. (6.2) and (6.4) one can
specify the explicit form of ¢(t).
Substituting from Eq. (6.4) in Eqg. (4.11), we obtain,

€ = _g, €1 = 0. (65)

Also, the speed of sound of the scalar perturbation in the context of f(T) gravity is equal
to?,

2 In

* " Hfyy®

and for the power-law theory of Eq. (6.1), it reads,

(6.6)

1
V2n—1

Thus, the causality condition (c¢s < 1) sets the constraint that n < % or n > 1. However, if
both the stability and the causality conditions are imposed (0 < ¢s < 1), the parameter n is
constrained as n > 1.

Cs = (6.7)
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Similar to k-inflation models [75, 76], the running of the speed of sound should be
introduced in the f(T) perturbative analysis, as an additional slow-roll parameter [73, 74],

Sz_dlncs/dt s =dlnsn/dt
1 = H ’ n+1 = H

. (6.8)
Using (6.7), it is easy to find that all the sound speed slow-roll parameters of the power law
f(T) gravity are null.

In the FRW cosmological background, small deviations from homogeneity d¢(t, ) can be
transformed to Fourier space, in which case each Fourier mode evolves in an independent
way from the other modes, as it can be seen below,

s (t,K) = f e R 54 (1, 7).

where 7 and k = |I?| are the comoving coordinates and the comoving wavenumber,
respectively. Then, 1/k defines the comoving wavelength, and the physical mode
wavelength is A(t) = a(t)/k. At sub-horizon scale, the physical wavelength satisfies
A < Ay, where 1y = H™! is the Hubble radius, to which we refer to as “the horizon”.
However, in f(T) gravity, due to the contribution of the speed of sound of the scalar
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fluctuations, it is convenient to modify this condition to be A1 < A5, where A5 = (csH)™ is
the sound horizon.

In observational cosmology, it is convenient to expand the power spectrum of scalar
(tensor) perturbations as follows,

o \s b g ()4 285 (in( )

Ps(k) = AS(F) , (6.9)
k nl+%%ln(£)+w

rw - alt) , 610

where As (A;) are the scalar (tensor) amplitude and ns (n;), % ( d‘f;"k) and d";’;fz are the
scalar (tensor) spectral index of primordial curvature perturbations, the running of the
scalar (tensor) spectral index, and the running of the running of the scalar spectral index,
respectively.
We restrict ourselves to the lowest order in the slow-roll parameters, in which case the
primordial power spectrum of the primordial curvature scalar perturbations is equal to,
[45, 73, 74]

1 H? 1 (2n-1)*2p®

- 87T2M§ Cgél A=1s T 87T2M,% ﬁ(ﬁt_ nti)z A=1s '

S

(6.11)
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The sound horizon crossing can be expressed as 1 = Ag, which determines the time of the

sound horizon exit,
B
2n—1)?aik |"#
5= g [k —[%] ] (6.12)

Inserting the above expression in Eq. (6.11), we can evaluate the scalar power spectrum in
terms of the comoving wavenumber k, and the resulting expression is,

2
_ 1 o 2 [k \™P
Ps(k) = “gens ((2n-1)%n) z) (6.13)
By comparing with (6.9), we easily obtain the resulting expression for the spectral index of
primordial curvature perturbations, which is,

_ %
ng—1= =y (6.14)

Remarkably, the above relation gives a modified version of the general relativistic power
spectrum. We restrict ourselves by choosing ng = 0.96 to fulfill the observational
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constraints from the joint analysis of Planck and BICEP2/Keck Array collaborations.
Consequently, we get,

B = -0.02n. (6.15)
The tensor fluctuations power spectrum in f(T) gravity, is given by the standard expression,
2 a’H?
P, = i , (6.16)
My Z A=Ay
where the parameter z is equal to [73, 74],
Tf,
Z; = aexp fzdt , y= T (6.17)
2 fr

All quantities in the right hand side of Eqg. (6.16), should evaluated at the horizon crossing
A = Ay, where Ay, = H™! is the Hubble horizon. In the general case, the freezing out
moment of the scalar fluctuations is determined at the sound horizon crossing time
instance, which is different from the freezing out of the tensor fluctuations which occur
when the Hubble horizon crossing occurs. However, this difference is negligible if we
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restrict ourselves to the lowest order slow-roll parameters [76]. In Ref. [73], it has been
proposed that if the following holds true,

= M <1, (6.18)
2H

the tensor fluctuations power spectrum in the f(T) gravity reduces to the standard
inflationary model where z; ~ a. In order to check the validity of this condition in the
present model, one may rewrite the parameter ¢ as follows,

5::%u—ch (6.19)
Using (6.5) and (6.7), § becomes,

=0.02|n - 1, (6.20)

where the last quantity in the above equation is evaluated by using (6.15). It is clear that
the parameter § = 0 in the TEGR limit (n = 1), while § < O(1) when —-49 < n < 51.
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Therefore, we find that the condition § < 1 is valid in our case, and thus, the power
spectrum of the tensor fluctuations is,

2H? 2

P = = (Bt - nt)2n? , (6.21)
M3 A=Ay M A=Ay
At the horizon exit 1 = Ay, we determine the time of the horizon exit,
_B_
1 an | np
tt = =|nt 1 n+ﬁ[ ] . 6.22
s [22] ) o2

Inserting (6.22) in (6.21), we write the tensor power spectrum in terms of the comoving
wavenumber k as follows,

Pi(k) =

zMz (-1)7 (k")"w . (6.23)

a;

By comparing the above expression, with (6.10), we get the spectral index of the tensor
power spectrum,

2B
=T (6.24)
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Using (6.15), we find that n; ~ —0.04. It is worth to mention that this value does not depend
on the index n. Thus, the scale-dependance of the tensor fluctuations power spectrum
(6.10) can be measured by using the spectral index,

n = dinP;
T dink

= —2¢. (6.25)

This observable is not measured accurately up to date, however, using (6.11) and (6.21),
the scalar-to-tensor ratio in f(T) is given by,

P

r= P—‘ = 16¢3¢, = -8c3n,. (6.26)
S
Remarkably, there is no way to put an upper limit on the parameter ¢, from the above
relation, without constraining the speed of sound. However, it reduces to the standard
consistency relation by setting ¢s = 1. From (6.7) and (6.24), we find,
168 0.32

T T (@2n-1)2(n+pB)  (2n-1)2’ (6.27)

where the last quantity in the above equation is evaluated by using (6.15). It is clear that
the TEGR limit produces a large tensor-to-scalar ratio r = 0.32. However, Eq. (6.27)
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shows that for n > 1.5, the model fulfills the upper bound of the Planck data r < 0.10.
Finally, we summarize some numerical values of the model parameters, for different
choices of the parameter n in Table 2.

Table 2: Model parameters

n B Cs Ns 0 n r
15 -0.029 | 0.707 0.96 0.0098 | -0.04 0.11
2 -0.039 | 0.577 0.96 0.0196 | —-0.04 | 0.062
4 -0.078 | 0.378 0.96 0.0588 | —0.04 | 0.017
6 -0.118 | 0.302 0.96 0.098 —-0.04 | 0.008
Eqg. No. (6.15) (6.7) | (6.14) | (6.20) | (6.24) | (6.27)

As it can be seen in Table 2, the compatibility with the Planck data occurs for a wide range
of the free parameters of the model.

1We note that the torsion scalar dependence in Eq. (6.6), as is given in [45, 73, 74], has
been replaced by the Hubble parameter which is more appropriate for our-analysis.
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Concluding Remarks

In this paper we investigated the implications of a constant-roll condition on f(T) gravity
inflation. We assumed that the theory is described by an inflaton minimally coupled to an
f(T) teleparallel gravity, and we examined in detail the implications of the constant-roll
condition in the cosmological evolution. Our approach enabled us to introduce a
reconstruction technique, in the context of which it is possible by fixing the Hubble
evolution, to find both the constant-roll scalar potential and also the f(T) gravity which may
generate such evolution. Also, by fixing the f(T) gravity, by employing the reconstruction
technique we developed, we were able to find both the Hubble rate corresponding to it and
also the scalar potential. Also we calculated the power spectrum of primordial scalar
curvature perturbations and also the power spectrum of primordial tensor perturbations,
and we investigated the implications of the constant-roll condition on the spectral index and
the scalar-to-tensor ratio. As we showed, the resulting observational indices can be
compatible with the observational data, and we examined the parameter space in order to
find which values allow the compatibility with current observational data.

As a general conclusion, by taking into account the results of the present study but also of
previous studies of F(R) gravity, the constant-roll condition can provide an appealing
theoretical framework, in the context of which a viable theory of inflation is obtained, which
is compatible with the current observational data. What now remains, is to investigate the
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implications of the constant-roll scenario on Gauss-Bonnet F(G) theories, and also other
modified gravity theories such as mimetic gravity or F(R, T) gravity.
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