$B \to \pi\pi$ Form Factors at Large Dipion Mass

(– in the QCD Factorization approach –)

Thorsten Feldmann (Univ. Siegen)

based on: arXiv:1608.07127 [to appear in JHEP]

in collaboration with Philipp Böer (Siegen) and Danny van Dyk (Zürich, U.)

- Mini-Workshop -

"B-meson decays into multi-hadron final states" Siegen, 21. Februar 2017

GEFÖRDERT VOM

 $B
ightarrow \pi \pi$ Form Factors in QCDF 1 / 19

Brief Motivation

- ullet Phenomenological determination of $|V_{ub}|$
 - one of the least precisely known CKM matrix elements
 - apparent tension between exclusive and inclusive measurements
 - $B \to \pi \pi \ell \bar{\nu}_{\ell}$ decays allow for independent cross-checks
 - "background" for $B o
 ho \ell ar{
 u}_\ell$
 - full angular distribution of the 4-body final state
 - rich set of observables; different hadronic systematics

[Faller et al. '14]

2 / 19

- Hadronic Input for other decay modes
 - e.g. for $B \to \pi\pi\pi$
- Playground for various QCD Methods:
 - QCD Sum Rules
 - Chiral Perturbation Theory
 - HQET / SCET
 - QCD Factorization
 - . . .

Kinematics and Form-Factor Definitions

dipion momentum: $k = k_1 + k_2$

relative momentum: $\bar{k} = k_1 - k_2$

momentum transfer: $q = p - k = q_1 + q_2$

dipion helicity angle: $\cos heta_\pi \propto (m{q} \cdot ar{k})$

Källén function: $\lambda = M_B^4 + q^4 + k^4 - 2(M_B^2q^2 + M_B^2k^2 + q^2k^2)$

Hadronic matrix elements for vector and axial-vector currents

$$\begin{array}{ccc} \langle \pi^+(k_1)\pi^-(k_2)|\bar{u}\gamma^\mu b|\bar{B}(\rho)\rangle & \to & F_\perp \\ \\ \langle \pi^+(k_1)\pi^-(k_2)|\bar{u}\gamma^\mu \gamma_5 b|\bar{B}(\rho)\rangle & \to & F_0,F_\parallel,F_t \end{array}$$

- 4 form factors $F_i \equiv F_i(q^2, k^2, \cos \theta_{\pi})$
- partial wave expansion for $\cos \theta_{\pi} \rightarrow S_{-}, P_{-}, D_{-}, \dots$ waves

Phase-Space Constraints for QCDF Region

- dipion invariant mass: $k^2 = (k_1 + k_2)^2 \stackrel{!}{\gg} \Lambda_{\rm had}^2$
- pion energies (in *B*-frame): $E_{1,2} = \frac{p \cdot k_{1,2}}{M_B} \gg \Lambda_{\text{had}}$

$$E_{1,2} \ge E_{\min}(q^2, k^2, |\cos \theta_{\pi}|) = \frac{M_B^2 + k^2 - q^2 - |\cos \theta_{\pi}|\sqrt{\lambda}}{4M_B}$$
 $(m_{\pi} \equiv 0)$

Consider 3 scenarios:

A:
$$k^2 \ge \frac{2M_B^2}{3}$$
 $\Rightarrow E_{\min} \simeq 1.8 \text{ GeV}$

B:
$$k^2 \geq \frac{M_B^2}{2}$$
 $\Rightarrow E_{\min} \simeq 1.3 \text{ GeV}$

C:
$$k^2 \geq \frac{M_B^2}{4}$$
 and $|\cos \theta_\pi| \leq \frac{1}{3}$
 $\Rightarrow E_{\min} \simeq 1.2 \text{ GeV}$

Technical Derivation

Similar structure as for non-leptonic decays

[Beneke et al. '99]

$$\begin{split} &\langle \pi^+(k_1)\pi^-(k_2)|\,\bar{u}\,\Gamma\,b\,|B^-(\rho)\rangle\\ &\sim\,\xi_{\pi^-}(E_2)\int_0^1\!\mathrm{d}u\,\phi_{\pi^+}(u)\,T^{\mathrm{I}}_\Gamma(u,\dots)\\ &+\,\int_0^1\!\mathrm{d}u\,\int_0^1\!\mathrm{d}v\,\int_0^\infty\!\frac{\mathrm{d}\omega}{\omega}\,\phi_{\pi^+}(u)\,\phi_{\pi^-}(v)\,\phi_B(\omega)\,T^{\mathrm{II}}_\Gamma(u,v,\omega,\dots)\\ &+\,\mathrm{power\;corrections} \end{split}$$

• universal "soft" $B \to \pi$ form factor $\xi_{\pi}(E_2)$

- [Charles et al. '98; Beneke/TF '01]
- universal LCDAs $\phi_{\pi}(u)$, $\phi_{B}(\omega)$ for light and heavy mesons
- ullet perturbatively calculable short-distance kernels $\mathcal{T}_{\Gamma}^{\mathrm{I,II}}$ (process-dependent)

$$T_{\Gamma}^{\mathrm{I}}\sim\mathcal{O}(lpha_{\mathrm{S}})$$
 (hard gluon exchange, $\mu_{\mathrm{hard}}\sim\sqrt{k^{2}}$)
$$T_{\Gamma}^{\mathrm{II}}\sim\mathcal{O}(lpha_{\mathrm{S}}^{2})$$
 (hard and "hard-collinear" gluon exchange , $\mu_{\mathrm{hc}}\sim\sqrt{E_{2}\,\Lambda_{\mathrm{had}}}$)

Diagrammatic Analysis

To be shown:

- 1. leading-power contributions involve twist-2 LCDA of π^+ only, with finite convolution integrals
- 2. endpoint-divergencies that would arise from spectator interactions are universal and can be absorbed into ξ_{π}

Caveats:

• factorization structure does probably not hold for power corrections; this involves twist-3 LCDAs of the pion, which can be "chirally enhanced" by a large factor $\mu_\pi = \frac{m_\pi^2}{m_U + m_d} \sim 2.5 \, \text{GeV} \sim \frac{M_B}{2}$

The Kernel T_{Γ}^{I}

- contains short-distance QCD effects that do not involve the spectator
- $\rightarrow \mathcal{O}(m_b^2)$ virtualities of intermediate propagators:

light quark (A):
$$(p_b-q)^2 \simeq k^2$$
 heavy quark (B):
$$\simeq (uk_1+q)^2 - m_b^2 \simeq \bar{u} \left(k^2-2M_BE_1\right) - 2M_BE_2$$
 gluon (A,B):
$$\simeq (k_2+\bar{u}k_1)^2 = \bar{u}k^2$$

(momentum fractions in π^+ : u, \bar{u})

- → Dirac trace:
 - propagator numerators
 - projectors on leading-twist LCDA for π^+ and soft $B \to \pi$ form factor

The Kernel $T_{\rm F}^{\rm L}$

- contains short-distance QCD effects that do not involve the spectator
- for instance, the result for F₁ can be written as:

$$\label{eq:tilde_T_lambda} \begin{split} T_{\perp}^{I} \propto \frac{\alpha_s C_F}{N_C} \; f_2(\bar{u}) \; \mathrm{Tr} \left[k_2' k_1' \gamma_5 \, \Gamma_{\perp} \frac{1+\rlap/v}{2} \right] + \mathcal{O}(\alpha_s^2) \end{split}$$

with

$$f_2(\bar{u}) = \frac{1}{\bar{u}} \frac{M_B^2}{2E_2M_B + \bar{u}(2E_1M_B - k^2)}$$

finite convolution integrals with $\phi_{\pi}(u)$ for $\bar{u} \to 0$

→ task #1
√

[hard-collinear gluon exchange between spectator quark and any of the vertices (1-6)]

Endpoint Divergencies:

ullet endpoint divergencies emerge in the limit ar u, ar v o 0 and/or $\omega o 0$

e.g.:
$$\int_0^1 du \, \frac{\phi_{\pi}(u)}{\bar{u}^2} \to \infty \,, \qquad \int_0^\infty d\omega \frac{\phi_{B}^+(\omega)}{\omega^2} \to \infty \qquad (\bar{u} = 1 - u)$$

- $\bar{u} \rightarrow 0$ divergencies do cancel, as expected from color-transparency
- what about the other divergent contributions?

Cancellation of Endpoint-Divergencies (Feynman Gauge)

structure	A1	A2	A3 + A4	A5	A6	A1-A6
$\frac{2E_2M_B}{\bar{v}^2k^2} s_5 \frac{\phi_B^+(\omega)}{\omega} \frac{\phi_\pi(v)}{2v\bar{v}}$	0	0	— С _{FA} 2v	0	$C_A \frac{v - \bar{v}}{2}$	$2vC_F - \frac{C_A}{2}$
$\frac{S_A}{\bar{u}} \frac{\phi_B^-(\omega)}{\omega} \frac{\phi_\pi(v)}{\bar{v}^2}$	$C_F \frac{1}{V}$	C _F v	$C_{FA} \frac{\bar{v}}{v}$	0	$-\frac{C_A}{2} \frac{\bar{v}}{v}$	$C_F(1+\bar{v})$
$\frac{S_{A}}{\bar{u}} \frac{\phi_{B}^{+}(\omega)}{\omega} \frac{\mu_{\pi} \phi_{\sigma}(v)}{6\bar{v}^{3}E_{2}}$	c_F	0	0	0	0	C_F
$2\mu_{\pi} \frac{S_{A}}{\tilde{u}} \frac{\phi_{B}^{+}(\omega)}{\omega^{2}} \frac{\phi_{P}(v)}{\tilde{v}}$	0	C _F	0	0	0	C_F

structure	B1	B2	B3+B5	B4	B6	B1-B6
$\frac{2E_2M_B}{\bar{v}^2k^2} s_5 \frac{\phi_B^+(\omega)}{\omega} \frac{\phi_\pi(v)}{2v\bar{v}}$	0	0	0	C _{FA} 2v	$C_A \frac{\bar{v}-v}{2}$	$\frac{C_A}{2} - 2vC_F$
$\frac{S_{\underline{B}}^{(i)}}{\bar{u}} \frac{\phi_{\underline{B}}^{+}(\omega)}{\omega} \frac{\phi_{\pi}(v)}{\bar{v}^{2}}$	0	0	$-c_{FA} v_{\perp}^2$	$C_{FA} v_{\perp}^2$	0	0
$\frac{S_{B}^{(i)} + S_{B}^{(ii)}}{\bar{u}} \xrightarrow{\frac{\phi_{B}^{-}(\omega)}{\omega}} \frac{\phi_{\pi}(v)}{\bar{v}^{2}}$	$C_F \frac{1}{v}$	C _F v̄	C _{FA} ½	- C _{FA}	$-\frac{C_A}{2}\frac{\bar{v}}{v}$	$C_F(1+\bar{v})$
$\frac{S_{B}^{(i)} + S_{B}^{(ii)}}{\bar{u}} \frac{\phi_{B}^{+}(\omega)}{\omega} \frac{\mu_{\pi} \phi_{\sigma}(v)}{6\bar{v}^{3} E_{2}}$	CF	0	$-C_{FA} v_{\perp}^2$	$c_{FA} v_{\perp}^2$	0	C_F
$\frac{S_B^{(i)}}{\bar{u}} \frac{\phi_B^-(\omega)}{\omega} \frac{\mu_\pi \phi_\sigma(v)}{6\bar{v}^3 E_2}$	0	0	$c_{FA} v_{\perp}^2$	$-c_{FA} v_{\perp}^2$	0	0
$2\mu_{\pi} \frac{S_{\underline{B}}^{(i)} + S_{\underline{B}}^{(ii)}}{\bar{u}} \frac{\phi_{\underline{B}}^{+}(\omega)}{\omega^{2}} \frac{\phi_{\underline{P}}(v)}{\bar{v}}$	0	CF	0	0	0	C_F

NLO Spectator Scattering - The Kernel $T_{\Gamma}^{\rm II}$

Cancellation of endpoint divergencies:

- sum of all diagrams reproduces the very same structure of endpoint divergencies as in the $B \to \pi$ case: [Beneke, Feldmann '01]
 - endpoint divergencies are universal and can be absorbed in ξ_{π}

$$\langle \pi\pi|\bar{u}\Gamma b|B\rangle = \frac{2\pi f_{\pi}\,\xi_{\pi}(E_2)}{k^2}\,\int_0^1 du\,\phi_{\pi}(u)T^{\rm I}_{\Gamma}(u,\dots) \quad + \quad \text{finite terms}$$

• remaining factorizable (i.e. endpoint-finite) contributions determine $\mathcal{T}_{\Gamma}^{\mathrm{II}}$

→ task #2 √

Twist-3 Contributions to T_{Γ}^{I}

- T_{Γ}^{II} corrections conceptually important, but clearly suppressed by α_s \rightarrow can be neglected to first approximation
- Contributions from twist-3 LCDAs in π^+ "chirally enhanced" (s.a.) \to to be included in numerical estimate
- Neglect 3-particle contributions → Wandzura-Wilczek relations
- Corresponding contributions to $B \to \pi\pi$ matrix elements can now be written as

$$\langle \pi^+ \pi^- | \bar{\psi}_u \Gamma \psi_b | B^- \rangle \bigg|_{\text{twist-3}} \propto \xi_\pi(E_2) \int\limits_0^1 du \, \left(\phi_P(u) \, T_\Gamma^{(\mathrm{I},\mathrm{P})}(u,\ldots) + \phi_\sigma(u) \, T_\Gamma^{(\mathrm{I},\sigma)}(u,\ldots) \right)$$

For instance,

$$T_{\Gamma}^{(\mathrm{I},\mathrm{P})} = i \, \frac{\alpha_{\mathrm{s}} C_{F}}{N_{\mathrm{C}}} \, \frac{2 M_{\mathrm{B}} \mu_{\pi}}{\kappa^{2}} \, \frac{\mathrm{Tr} \left[\frac{k_{2}}{2} \frac{k_{1}}{\gamma_{5}} \Gamma_{\perp} \frac{1+\nu}{2} \right]}{\bar{u}} + \mathcal{O}(\alpha_{\mathrm{s}}^{2})$$

• Endpoint divergence from $\phi_P(u)/\bar{u}$ cancels with a corresponding term in $\mathcal{T}_{\Gamma}^{(1,\sigma)}$.

Twist-3 Contributions to T_{Γ}^{I}

- T_{Γ}^{Π} corrections conceptually important, but clearly suppressed by α_s \rightarrow can be neglected to first approximation
- Contributions from twist-3 LCDAs in π⁺ "chirally enhanced" (s.a.)
 → to be included in numerical estimate

For illustration:

- use $q^2 \sim \lambda \ll M_R^2$
- perform Gegenbauer expansion of the twist-2 pion LCDA
- use asymptotic form for twist-3 LCDAs

This leads to relations like:

$$F_0^{(S)} \approx \frac{\sqrt{\lambda}}{2M_B\sqrt{q^2}} F_t^{(S)} \approx \frac{i\alpha_s C_F}{N_C} \frac{2\pi f_\pi}{M_B} \frac{2\sqrt{\lambda}}{M_B\sqrt{q^2}} \left(1 + \frac{3a_2^\pi}{4} + \frac{\mu_\pi}{M_B}\right) \xi_\pi(\frac{M_B}{2}),$$

and similar for

$$F_0^{(P)} \simeq rac{1}{\sqrt{2}} \, F_{\parallel}^{(P)} \, , \quad ext{and} \quad F_0^{(D)} \simeq \sqrt{rac{2}{3}} \, F_{\parallel}^{(D)}$$

[some relations are a simple consequence of Lorentz invariance]

Phenomenological Implications

Partially integrated branching ratio

- branching ratios $\mathcal{B}(B^- \to \pi^+ \pi^- \mu^- \bar{\nu}_{\mu})$
- integrated over benchmark phase-space regions A,B,C

(see above)

phase space region	central	$\delta_{\sf param}$	δ_{f_+}	unit
A	2.93	+0.87 -0.40	+0.49 -0.35	$10^{-8} V_{ub} ^2$
В	9.60	+2.80 -1.30	+1.89 -0.79	$10^{-7} V_{ub} ^2$
С	3.18	$^{+0.63}_{-0.63}$	+0.48 -0.33	$10^{-5} V_{ub} ^2$

The total uncertainty is
$$\delta_{\mathrm{tot}}^2 = \delta_{\mathrm{param}}^2 + \delta_{f_+}^2$$
 .

→ Even for Scenario C, the BR is too small to be measured with reasonable accuracy (!)

(reason: perturbative suppression by $\mathcal{O}(\alpha_s^2)$)

Forward-backward asymmetry

$$A_{\text{FB}}^{\pi}(k^2, q^2) \equiv \frac{\int_{-1}^{+1} d\cos\theta_{\pi} \operatorname{sign}(\cos\theta_{\pi}) \mathcal{B}(k^2, q^2, \cos\theta_{\pi})}{\int_{-1}^{+1} d\cos\theta_{\pi} \mathcal{B}(k^2, q^2, \cos\theta_{\pi})}$$

phase space region	central	δ param	δ_{f_+}	unit
А	-1.96	+0.15 -0.19	+0.04 -0.07	10-1
В	-0.32	+0.19 -0.21	+0.07 -0.11	10-1
С	+1.25	+0.07 -0.07	+0.03 -0.08	10-1

The total uncertainty is
$$\delta_{\mathrm{tot}}^2 = \delta_{\mathrm{param}}^2 + \delta_{f_+}^2$$
 .

- ightarrow FB asymmetries of the order 10%
- → sign of FB asymmetry changes for Scenario C

Forward-backward asymmetry

 \bullet normalized partial decay rate $\frac{1}{\Gamma}\,\frac{d\Gamma}{d\cos\theta_\pi}$ as a function of $\cos\theta_\pi$

(integrated over k^2 , q^2 – shaded areas = 68% intervals from variation of all input parameters)

- → FB asymmetries of the order 10%
- → sign of FB asymmetry changes for Scenario C

Summary and Outlook

- Factorization formula for $B \to \pi\pi$ form factors works as expected
 - leading-power contributions emerge from twist-2 LCDAs
 - non-trivial cancellation of endpoint-divergencies
- Caveats:
 - very small decay rate in the QCDF region
 - chiral enhancement of twist-3 contributions

Outlook

- set constraints for extrapolation from other phase-space regions (using other approaches: [Meißner, Wang '14], [Kang et al. '14], [Hambrock, Khodjamirian '15])
- apply to other decay topologies, e.g. in (off-resonant) $B \to K\pi\ell\ell$ decays

Backup Slides

Input Parameters

parameter	value/interval	unit	prior		
QCD input parameter					
$\alpha_s(m_Z)$	0.1184 ± 0.0007	_	gaussian @ 68%		
μ	$M_B/2 \pm M_B/4$	GeV	gaussian [†] @ 68%		
\overline{m}_{u+d} (2 GeV)	7.8 ± 0.9	MeV	uniform @ 100%		
hadron masses					
m_B	5279.58	MeV	_		
m_{π}	139.57	MeV	_		
parameters of the pion DAs					
f_{π}	130.4	MeV	_		
a_{2}^{π} (1 GeV)	[0.09, 0.25]	_	uniform @ 100%		
μ_{π} (2 GeV)	2.5 ± 0.3	GeV	_		

Prior distribution are expressed as a product of individual priors that are either uniform or gaussian. The prior for the parameters describing the $B \to \pi$ form factor f_+ taken from [Imsong et al. 14].

Minimal pion energy:
$$E_{\min} = \min \left[\frac{k^2 + M_B^2 - q^2 - |\cos\theta| \sqrt{\lambda(k^2, q^2)}}{4M_B} \right]$$

- Decreasing function of $|\cos \theta| \Rightarrow$ minimal value at: $|\cos \theta|_{\text{max}}$
- Decreasing function of $k^2 \Rightarrow$ minimal value at k_{\min}^2
- q^2 -dependence (for fixed k_{\min}^2 and $|\cos\theta|_{\max} \equiv 1/a$): minimum at

$$q_{\star}^2 = M_B^2 + k_{\min}^2 - \frac{2aM_B\sqrt{k_{\min}^2}}{\sqrt{a^2 - 1}} \le q_{\max}^2 = (M_B - \sqrt{k_{\min}^2})^2$$
.

Two cases:

• $q_{\star}^2 \geq 0$ with $E_{\min} < \frac{a-1}{a} \, \frac{M_B}{2}$ and

$$E_{\min}(k_{\min}^2, q_{\star}^2, 1/a) = \frac{\sqrt{a^2 - 1}}{2a} \sqrt{k_{\min}^2}$$

• $q_{\star}^2 < 0$, with $E_{\min} > \frac{a-1}{a} \, \frac{M_B}{2}$ and

$$E_{\min}(k_{\min}^2, 0, 1/a) = \frac{(a+1) k^2 + (a-1) M_B^2}{4a M_B}$$