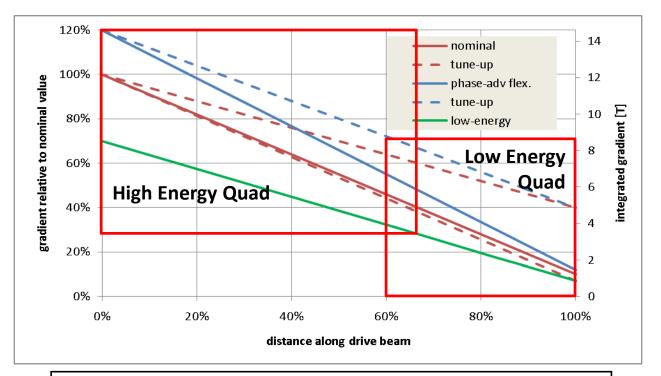


# ZEPTO – Zero Power Tuneable Optics: Permanent Magnet Quadrupoles and Dipoles for CLIC

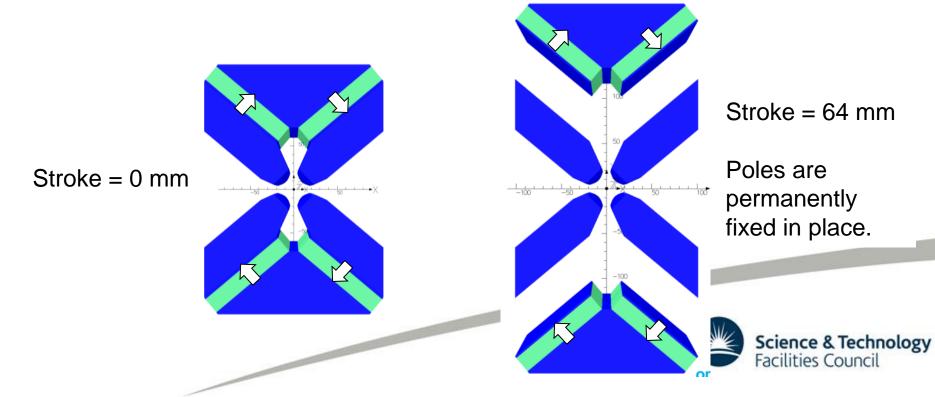

#### Jim Clarke

on behalf of Alex Bainbridge, Norbert Collomb, Ben Shepherd, (STFC Daresbury Laboratory) and Michele Modena (CERN)

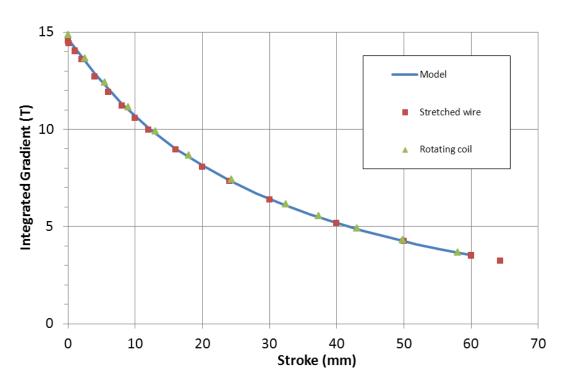
**10<sup>th</sup> Feb 2017, CLIC Implementation Meeting** 

#### **PM Quad Recap**

- We have developed PM alternatives for the Drive Beam Quads
  - Two types were successfully prototyped to cover the full range required




High energy quad – Gradient very high Low energy quad – Very large dynamic range



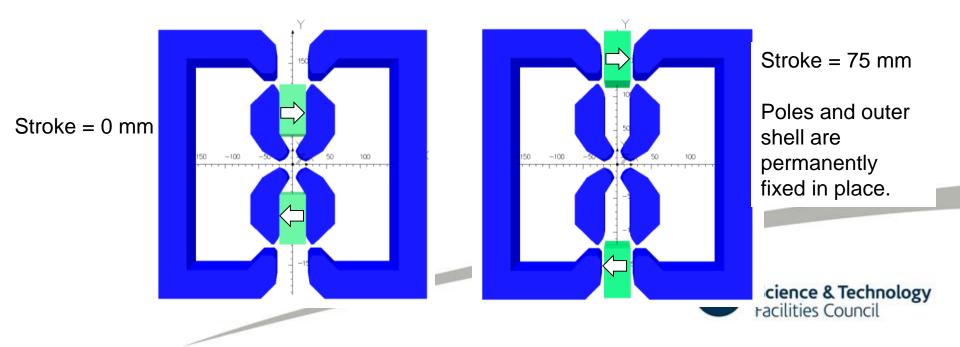

## High Energy Quad Design

- NdFeB magnets with  $B_r = 1.37 T$  (VACODYM 764 TP)
- 4 permanent magnet blocks each 18 x 100 x 230 mm
- Mounted at optimum angle of 40°
- Max gradient = 60.4 T/m (stroke = 0 mm)
- Min gradient = **15.0 T/m** (stroke = 64 mm)
- Pole gap = 27.2 mm
- Field quality =  $\pm 0.1\%$  over 23 mm

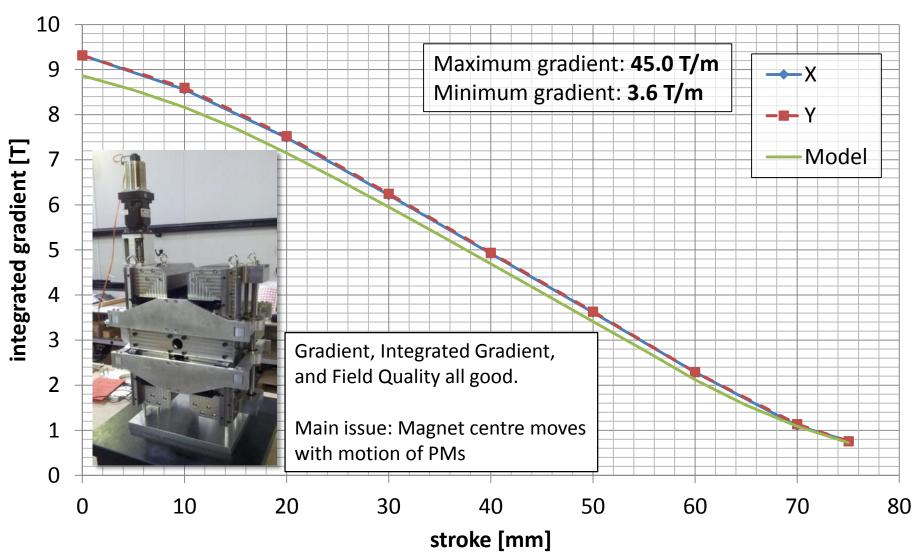


# High Energy Quad Measured Integrated Gradient




Gradient, Integrated Gradient, and Field Quality all good.

Main issue: Magnet centre moves with motion of PMs

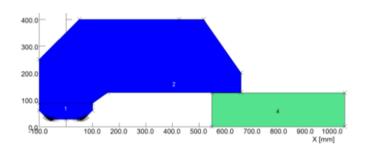


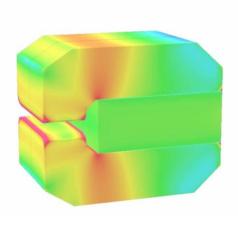

## Low Energy Quad Design

- Lower strength easier but requires much larger tunability range (x12)
- Outer shell short circuits magnetic flux to reduce quad strength rapidly
- **NdFeB** magnets with  $B_r = 1.37 T$  (VACODYM 764 TP)
- 2 permanent magnet blocks are 37.2 x 70 x 190 mm
- Max gradient = **43.4 T/m** (stroke = 0 mm)
- Min gradient = **3.5 T/m** (stroke = 75 mm)
- Pole gap = 27.6 mm
- Field quality = ±0.1% over 23 mm

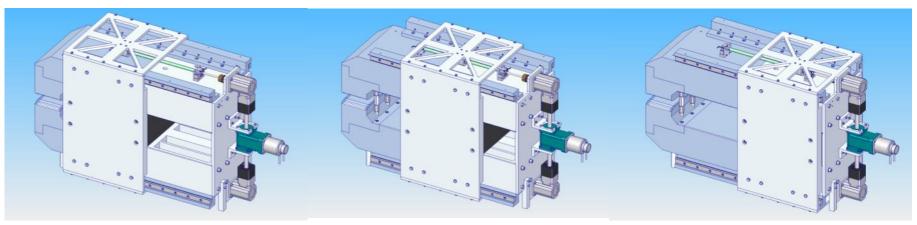


# Low Energy Quad Measured Integrated Gradient





## **CLIC PM Dipoles**

- Next we have investigated PM dipoles
  - Drive Beam Turn Around Loop (DB TAL)
  - Main Beam Ring to Main Linac (MB RTML)
- Total power consumed by both types: **15 MW**
- Several possible designs considered for DB TAL (the most challenging of the two test cases)


| Туре    | Quantity | Length (m) | Strength<br>(T) | Pole Gap<br>(mm) | Good Field<br>Region (mm) | Field<br>Quality     | Range<br>(%) |
|---------|----------|------------|-----------------|------------------|---------------------------|----------------------|--------------|
| MB RTML | 666      | 2.0        | 0.5             | 30               | 20 x 20                   | 1 x 10 <sup>-4</sup> | ± 10         |
| DB TAL  | 576      | 1.5        | 1.6             | 53               | 40 x 40                   | 1 x 10 <sup>-4</sup> | 50-100       |

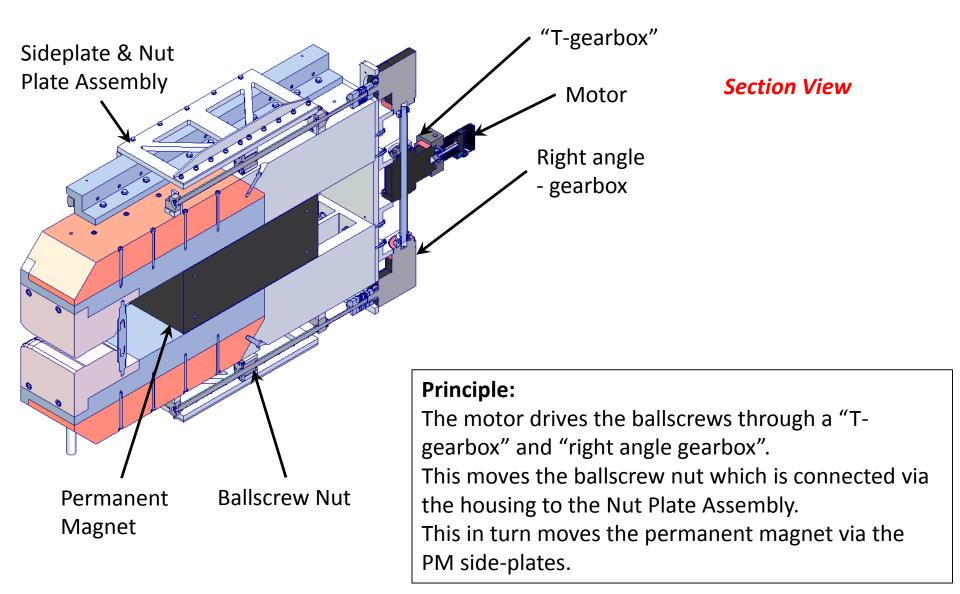
#### Selected Dipole Design





- Sliding PM in backleg
- Similar to low energy DBQ
- Rectangular PM
- Forces manageable
- C shape possible
- Curved poles (along beam arc) possible
- Wide
- Large stroke
- Sliding assembly using rails, stepper motor and a gearbox.
- This should cope with the horizontal forces (27kN peak) and hold the Magnet steady at any point on a 400 mm stroke.




#### **Dipole Prototype**

- Original plan was to build a 0.5m version of full size DB TAL magnet
- However, *cost exceeded* available budget
- So, instead we are building a scaled version
  - Cost dominated by one off PM block costs (>50%)
  - Will still demonstrate the *tuneable PM dipole principle* as well as achieving the same field quality and have the same relative tuning range.

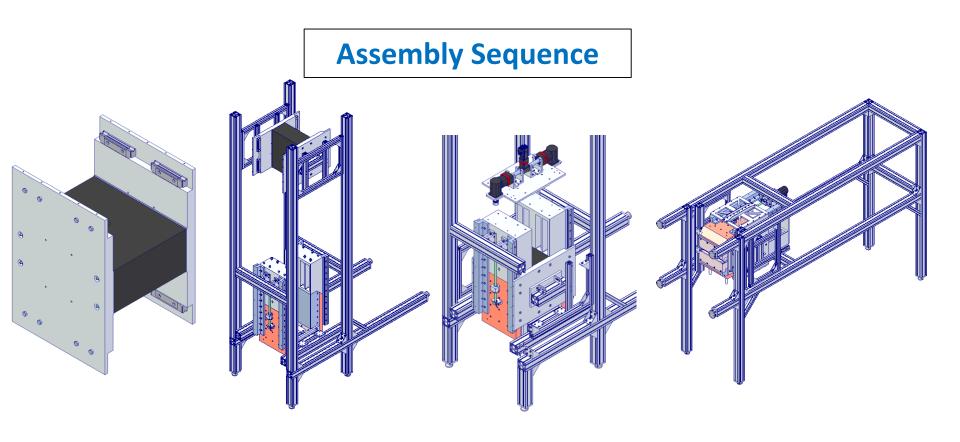
| Туре                  | Length<br>(m) | Max Field<br>Strength<br>(T) | Pole Gap<br>(mm) | Good<br>Field<br>Region<br>(mm) | Field<br>Quality     | Range (%) |
|-----------------------|---------------|------------------------------|------------------|---------------------------------|----------------------|-----------|
| DB TAL                | 1.5           | 1.6                          | 53               | 40 x 40                         | 1 x 10 <sup>-4</sup> | 50–100    |
| Original<br>Prototype | 0.5           | 1.6                          | 53               | 40 x 40                         | 1 x 10 <sup>-4</sup> | 50–100    |
| Scaled<br>Prototype   | 0.4           | 1.1                          | 40               | 30 x 30                         | 1 x 10 <sup>-4</sup> | 50–100    |

Note: Scaled Prototype weighs ~1500kg ! PM block is ~350kg!

#### **Prototype Dipole Overview**

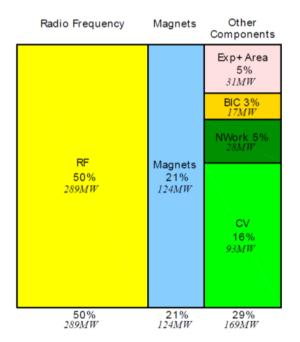


## **PM Block Details**


- Manufactured, measured & delivered by Vacuumschmelze
- Magnet block dimensions are **500x400x200 mm**, with 4 holes on 400mm axis for mounting tie rods.
- Magnet material NdFeB, Vacodym 745TP (Br 1.38T)
- Constructed from 80 (large!) individual blocks glued together (each 100x50x100mm)
- World's largest ever NdFeB PM block?






## **Prototype Progress**

- All externally procured items have been delivered
- Assembly area prepared (non-trivial) specific safety training has been given to all staff involved
- Assembly anticipated to be complete by early March 2017
- Measurements (at DL only) and Report to follow immediately afterwards



#### **Next Steps**

- Work with CLIC beam dynamics team to maximise benefit of PM magnets – starting today!
- Assess which other magnet families within 380GeV CLIC could be PM based to reduce the overall cost and power demand
- Optimise current quad designs to minimise capital cost



Power consumption by technical systems for CLIC 3 TeV

#### Quick Assessment May 2016

Highor

#### DRIVE BEAM

| Туре   | Magnet<br>type |       | ective<br>ngth [m] H | v  | St | rength Units | Min field |      | Rel Field | larmonics per n<br>Tm] [kW] | -    | [MW] |
|--------|----------------|-------|----------------------|----|----|--------------|-----------|------|-----------|-----------------------------|------|------|
| DBQ    | Quadrupole     | 41400 | 0.194                | 26 | 26 | 62.78T/m     | 10%       |      | 1E-03     | 1.0E-04                     | 0.5  | 17.0 |
| MBTA   | Dipole         | 576   | 1.5                  | 40 | 40 | 1.6T         | 10%       | 100% | 1E-03     | 1.0E-04                     | 21.6 | 12.4 |
| мвсота | Dipole         | 1872  | 0.2                  | 40 | 40 | 0.07T        | -100%     | 100% | 1E-03     | 1.0E-03                     | 0.3  | 0.5  |
| QTA    | Quadrupole     | 1872  | 0.5                  | 40 | 40 | 14T/m        | 10%       | 100% | 1E-03     | 1.0E-04                     | 2.0  | 3.7  |
| SXTA   | Sextupole      | 1152  | 0.2                  | 40 | 40 | 85T/m²       | 10%       | 100% | 1E-03     | 1.0E-03                     | 0.1  | 0.1  |

Effective

0.3

0.3

0.15

0.2

0.3

0.075

0.15

0.2 0.075

0.36

0.2

0.2

Total

6

12

666

16

8

268

223

318

73

202 44

110

230

87

192

520

16

Magnet type

Dipole

Dipole

Dipole

Dipole

Dipole

Q3 Type 1 Quadrupole

Sextupole

Sextupole

Туре

D3 D4

Q1

Q2

02 Type 1

D2 Type 2

Q3 Type 2

Q3 Type 3

Q4 Type 1

Q4 Type 2

Q4 Type 3

Q5

Q6

SX2

SX1

MB1

MB2

MB3

MBCO

01

SX

SX2

Q4

QLINAC

MBCO2

Dipole

Dipole

Dipole

Dipole

Quadrupole

Sextupole

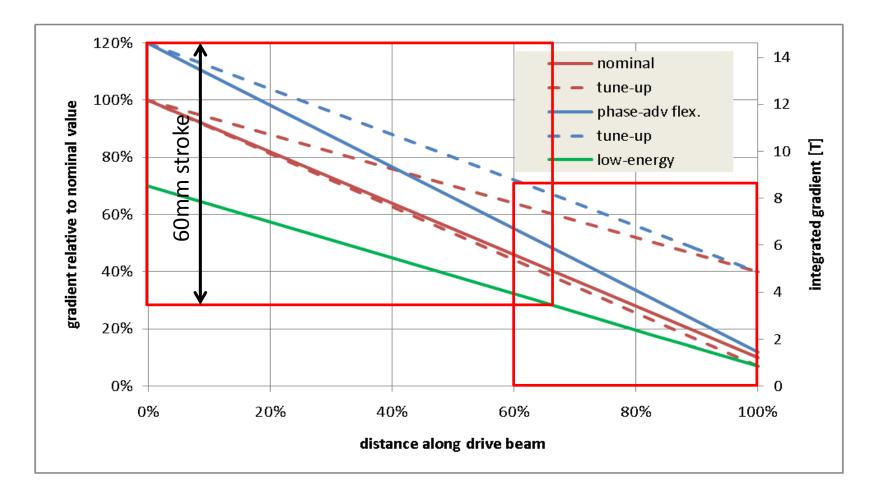
Sextupole

Quadrupole

Dipole CO

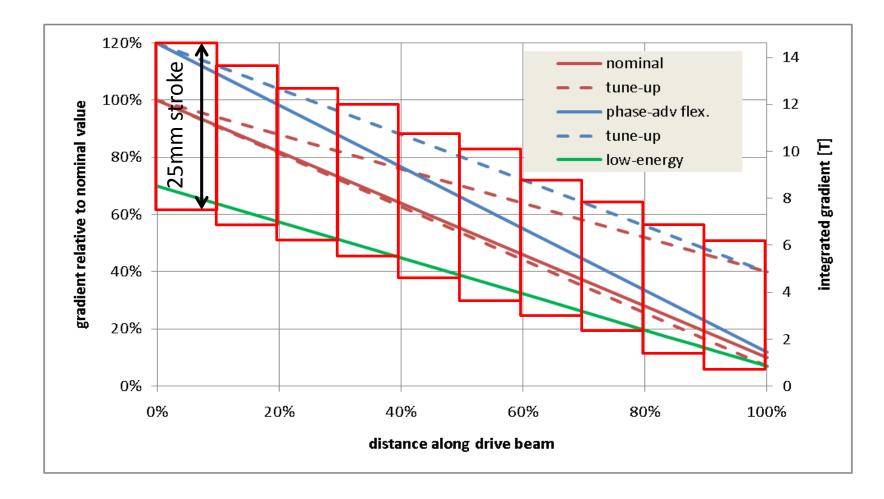
Quadrupole

#### Several promising candidates rapidly identified (another 28MW)


| Length |     | Rel FieldHarmonics per magnet |             |                |                   |         |      |            |  |  |  |  |  |  |  |
|--------|-----|-------------------------------|-------------|----------------|-------------------|---------|------|------------|--|--|--|--|--|--|--|
| [m]    | Н   | V St                          | rength Unit | s Min field Ma | ax field Accuracy | [Tm]    | [kW] | total [MW] |  |  |  |  |  |  |  |
| 1      | 30  | 30                            | 0.4T        | 100%           | 100%              | 1.0E-04 | 1.8  | 0.0        |  |  |  |  |  |  |  |
| 1.5    | 30  | 30                            | 0.7T        | 100%           | 100%              | 1.0E-04 | 5.8  | 0.1        |  |  |  |  |  |  |  |
| 1.5    | 30  | 30                            | 0.5T        | 100%           | 100%              | 1.0E-04 | 3.8  | 2.5        |  |  |  |  |  |  |  |
| 1.5    | 500 | 30                            | 0.5T        | -100%          | 120%              | 1.0E-04 | 3.9  | 0.1        |  |  |  |  |  |  |  |
| 15     | 500 | 30                            | 0 3T        | -100%          | 120%              | 1 0F-04 | 23   | 0.0        |  |  |  |  |  |  |  |

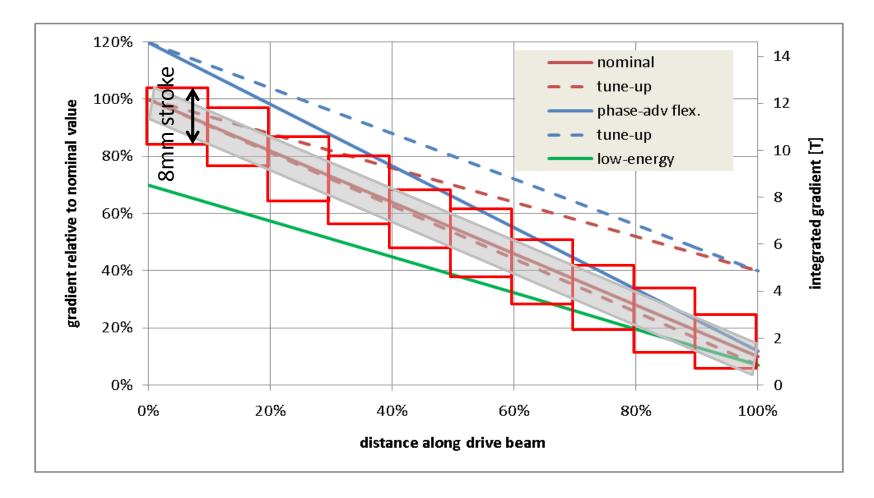
#### DAMPING AND PRE-DAMPING RINGS

Higher


|    |                  | Magnet     |      | ffective |     |      |                |           | May D | ol Field H | Higher<br>armonic per m | agnot |            |
|----|------------------|------------|------|----------|-----|------|----------------|-----------|-------|------------|-------------------------|-------|------------|
|    | Туре             | type       |      | ngth [m] | н   | V St | rength Units I | Vin field |       | ccuracy    | s [Tm]                  | [kW]  | total [MW] |
|    | D1.7             | Dipole     | 76   | 1.3      | 160 | 80   | 1.7T           | 75%       | 100%  | 5E-04      |                         | 37.5  | 2.9        |
|    | Q30L04           | Quadrupole | 408  | 0.4      | 80  | 80   | 30T/m          | 20%       | 100%  | 5E-04      |                         | 11.4  | 4.7        |
| Я  | Q30L02           | Quadrupole | 408  | 0.2      | 80  | 80   | 30T/m          | 20%       | 100%  | 5E-04      |                         | 8.2   | 3.3        |
| PD | S300             | Sextupole  | 204  | 0.3      | 80  | 80   | 300T/m²        | 0%        | 100%  | 5E-04      |                         | 1.2   | 0.2        |
|    | ST0.3            | Steerer    | 312  | 0.15     | 80  | 80   | 0.3T           | -100%     | 100%  | 5E-04      |                         | 1.5   | 0.5        |
|    | SkQ5             | Skew Quad  | 76   | 0.15     | 80  | 80   | 5T/m           | -100%     | 100%  | 5E-04      |                         | 0.8   | 0.1        |
|    | CFM<br>D1.7Q10.5 |            | 204  | 0.43     | 100 | 20   | 1.4T           | 75%       | 125%  | 5E-04      |                         | 2.4   | 0.5        |
|    |                  |            |      |          | 0   | 0    | 10.5T/m        |           |       |            |                         |       | 0.0        |
| ЭR | Q75              | Quadrupole | 1004 | 0.2      | 20  | 20   | 75T/m          | 20%       | 100%  | 5E-04      |                         | 0.8   | 0.8        |
|    | \$5000           | Sextupole  | 576  | 0.15     | 20  | 20   | 5000T/m²       | 0%        | 100%  | 5E-04      |                         | 0.2   | 0.1        |
|    | ST0.4            | Steerer    | 712  | 0.15     | 20  | 20   | 0.4T           | -100%     | 100%  | 5E-04      |                         | 0.4   | 0.3        |
|    | SkQ20            | Skew Quad  | 96   | 0.15     | 20  | 20   | 20T/m          | -100%     | 100%  | 5E-04      |                         | 0.2   | 0.0        |

#### **Example Cost Reduction**




Wide tuneability is expensive – better to limit tuneability

#### **Example Cost Reduction**



Reduced range of motion will help significantly – magnets can be modular – same intrinsic design but with different PM block sizes for example.

#### **Example Cost Reduction**



Restricting the beam requirements will have a big impact

#### **Quad Comments**

#### • Quad procurement cost reduction drivers

- Simplification of design
- "Modular" solutions
- Reduced tuning ranges (motion requirements) e.g. ~8 to 100% has been demonstrated but ~80 to ~100% will allow simpler & cheaper motion system
- Reduced PM material volumes or cheaper material
- More relaxed space constraints
- Reduced magnet aperture, gradient, magnetic length
- PM Quads are generally applicable across CLIC and minimising the requested tuning range will help significantly!

### **Dipole Comments**

#### • Dipole procurement cost reduction drivers

- Simplification of design, reduction in forces
- Reduced tuning ranges (motion requirements) e.g. ~50 to 100% looks just about feasible but ~90 to 100% will be much simpler, cheaper, and more practical to implement
- Reduced PM material volumes or cheaper materials
- Reduced magnet aperture, field, magnetic length
- PM Dipoles are much less applicable generally, fixed field straightforward, even modest tuneability (e.g. ~90 to 100%) is difficult.
- Long (e.g. 2m) versions would priobably have to be multiple short versions.
- **Possible** "Hybrid" solution?
  - Combination of fixed field PM & tuneable EM dipoles?

