Modeling Radiation Damage Effects in Oxygenated Silicon Detectors

M. Petasecca^(1,2), G.U. Pignatel^(1,2), G. Caprai⁽¹⁾, D. Passeri^(1,2)

⁽¹⁾ University of Perugia, via G.Duranti 93 - 06125 Perugia ITALY

⁽²⁾ INFN sez. Perugia, via Pascoli 10 – 06120 Perugia ITALY

OUTLINE

- Introduction: modeling set-up
- Summary of present p-type and n-type Silicon radiation damage models
- Results on proton irradiated FZ Oxygen Enriched Silicon (DOFZ)
- Conclusions

Introduction

Geometrical Definition of the simulated structure

Sample structure: <u>PAD detector</u> with a Guard Ring (1µm torward the 3rd direction)

<111> FZ – Substrate:

- n-doped (7×10¹¹ cm⁻³) → 6kΩcm
- p-doped (5×10¹² cm⁻³) → 3kΩcm
- Charge concentration at the silicon-oxide interface:
 - 4×10^{11} cm⁻³ pre-irradiation
 - 1 ×10¹² cm⁻³ post-irradiation

Thickness:

p-type devices D = 300µm

n-type devices with different thickness:

D = 50-100-300 μm

Defect Energy Levels

Assignement	Energy Level	rgy Level Conc.	
VO ^(-/0)	Ec-0.17±0.01 eV	6÷7x10 ¹¹ cm ⁻³ /Mrad **	
V ₂ ^(-/0)	Ec-0.415±0.015 eV	1.0x10 ¹⁰ cm ⁻³ /Mrad **	
(neutron irradiation)			
E(240) V ₂ O ^(-/0)	Ec-0.545 eV	0.8x10 ⁹ cm ⁻³ ***	
(gamma irradiation)			
Γ - (V ₂ O - V ₃ ?)	Ec-0.46 eV	9.6x10 ⁹ cm ⁻³ *	
(p+,e- irradiation)			
H(160) CiOi (+/0)	Ev+0.37±0.01 eV	4÷7x10 ¹⁰ cm ⁻³ /Mrad **	

VO, always present in DLTS spectra, important because $VO+V \rightarrow V_2O$

[*] CERN-LHCC-2003-058 RD50 Status Report 2003.

[**] Pintilie Ioana, RESMDD'06, Florence 10-13 October 2006.

[***] visible only on high resistivity Si above 15Mrad of γ irradiation.

[*] Pirollo et al. "Radiation damage on p-type silicon detectors" NIM A 426 (1999)

Radiation Damage Model: P-TYPE Si

Level	Ass.	σ _n (cm²)	σ _p (cm²)	ղ(cm -1)	Ref.
E _c – 0,42eV	VV ^(-/0)	2e-15	2e-14	1,613	[2]
E _c – 0,46eV	VVV ^(-/0)	5e-15	5e-14	0,9	[1,3]
E _V + 0,36eV	C _i O _i	2,5e-14	2,5e-15	0,9	[1,2,3]

Note: in p-type Si the 0.46 level is not attributed to V_2O but to V_3 (vacancy related defects)

[1] Pirollo et al. "Radiation damage on p-type silicon detectors" NIM A 426 (1999)

[2] Zangenberg et al "On-line DLTS investigations of the mono and divacancy in p-type Si" NIM B 186 (2002)
[3] Ahmed et al. "DLTS studies of Si detectors after 24GeV p irradiation and 1 MeV neutron irradiation" NIMA 457 (2001)

Radiation Damage Model: N-TYPE Si

Level	Ass.	σ _n (cm²)	σ _p (cm²)	ղ(cm⁻¹)	Ref.
E _c – 0,42eV	VV (-/0)	2.2e-15	1.2e-14	13	[*]
E _c – 0,50eV	V ₂ O	4e-15	3.5e-14	0.08	[*]
E _V + 0,36eV	C _i O _i	2e-18	2.5e-15	1.1	[*]

[*] M.Petasecca, F.Moscatelli, D.Passeri, and G.U.Pignatel, IEEE TNS 53-5 (2006) 1-6.

samples from SMART collaboration

Standard FZ n-type Si, 23GeV proton irradiated

Standard FZ n-Type

Experimental data from Lindstrom G. et al., NIM A 466 (2001) – RD48-ROSE

Level	Ass.	σ _n (cm²)	σ _p (cm²)	ղ(cm ⁻¹)
E _c – 0,42eV	VV ^(-/0)	2e-15	1,2e-14	13
E _C – 0,53eV	VVO	5e-15	5e-14	0,08
E _V + 0,36eV	C _i O _i	2,5e-14	2,5e-15	1,1

Fz- Standard 300 micron

Experimental data from Lindstrom"Radiation damage in silicon detectors" Nuclear Instruments and Method in Physics Research A 512 (2003) 30-43

DOFZ n-type Si, 23 GeV proton irradiated

n-Type Oxigenated

Oxigen rich Fz n-Type [WS – 3k] N_{eff0} =1,5 x 10¹² cm⁻³ $g_{C} * N_{0} = 0,03$ (donor removal constant) $\rho = 3 k\Omega cm$ (substrate resistivity) $[O_{i}] = 1.5 \times 10^{17} [cm^{-3}]$ crystal orientation <111>

Experimental data from Lindstrom"Radiation damage in silicon detectors" Nuclear Instruments and Method in Physics Research A 512 (2003) 30-43

Ratio of acceptors Introduction rates between Standard-FZ and Oxigenated-FZ (DOFZ)

 $\frac{\eta(V_2O)_{Std}}{\mu(V_2O)_{Or}} = 3,4$

Comparison between Stand. FZ (n-type) and DOFZ Si, 23GeV proton irradiated

Conclusions

All the simulations made so far, compared with experimental data, are consistent with the following defect model scenario:

- $V_2 \rightarrow E_c$ -0.42 ÷ 0.43eV ($\eta >>1 \rightarrow n irrad., clusters$)
- $C_i O_i \rightarrow E_v + 0.36 eV$ (trap for holes $\rightarrow CCE$)
- $\Gamma(V_2O \text{ or } V_3?) \rightarrow E_c-0.46eV (p,e irradiation)$
- $V_2O \rightarrow E_c-0.53 \div 0.545eV$ (p, γ irradiation)

V₂O level very sensitive to initial O₂ concentration ! p-type puzzle: E_c -0.46 is <u>NOT</u> attributed to V₂O (!?!) Oxygenated p-type ?

