9th RD50 Workshop PDC discussion

> G. Kramberger E. Fretwurst

24 GeV proton irradiated samples

	MCz-n	MCz-p	Epi-n	STFZ-n	DOFZ-n
	Cz-n			STFZ-p	DOFZ-p
eta_{eq} [10 ⁻³ cm ⁻¹]	-4.2 to -6.5 [1,2,7]	3 to 7.5 [1,4] ** ???	-3 to -10 [6] ****	24 [5] 4[7]	6-7 [5] 4[7]
	-5.4 [3]	1999 - Contra Co			
Q√	3.8 [2] *	>3 [1,4]***	2.9 [6]	4.8	2.3*
[10 ⁻² cm ⁻¹]	4 [3]		(first component)		
au	~80 min@80C	>100 min@80C	~120min@80C	~50 min@80C	~200min@80C
ra T	(1 st component)				

Negative space charge

Positive space charge

 N. Manna, 8th RD50 workshop
 A.G. Bates and M. Moll, *Nucl. Instr. and Meth. A555* (2005) 113.
 E. Fretwurst, 3rd RD50 workshop
 H. HödelMoser, RESMDD06
 Rose RD48 status report
 G.Lindström, NIMA ()
 G. Pellegrini et al., NIM A552 (2005) 27.
 N. Manna, 7th RD50 workshop
 Lozano et al, NIMA A 552 (2005) 27–33.
 V Cindro, 8th RD50 Workshop

*saturation at Φ_{eq} >5.10¹⁴ cm⁻² ** not clear what "type" ***annealing not fully completed **** depends on thickness

Neutron irradiated samples

MCz-p,n ; DOFZ-n ; STFZ-n type:

- $\beta_{eq} \sim g_c \sim 20.10^{-3} \text{ cm}^{-1} [5,8,10]$
- $g_{\rm Y} = 4 \cdot 10^{-2} \, {\rm cm}^{-1}$
- $\tau_{ra} = -80 \min(a) 80C$

Epi-Si:

ρ>150 Ωcm (75 and 150 µm samples)

■ $g_c \sim 5 \cdot 10^{-3} \text{ cm}^{-1} [8,11]$ ■ $\rho = 50 \ \Omega \text{cm}$ (75 and 150 µm samples) = $g_c \sim -5 \cdot 10^{-3} \text{ cm}^{-1} [8,11]$ N. Manna, 8th RD50 workshop
 A.G. Bates and M. Moll, *Nucl. Instr. and Meth. A555* (2005) 113.
 E. Fretwurst, 3rd RD50 workshop
 H. HödelMoser, RESMDD06
 Rose RD48 status report
 G. Lindström, NIM A .
 G. Pellegrini et al., NIM A552 (2005) 27.
 N. Manna, 7th RD50 workshop
 Lozano et al, NIMA A 552 (2005) 27–33.
 V Cindro, 8th RD50 Workshop
 G. Kramberger, 8th RD50 Workshop

26 MeV proton irradiated samples

Type inversion is observed for all materials (SMART, HH)! How does that fit to our picture?

24 GeV proton irradiated samples

Neutron irradiated samples

Gregor Kramberger, 9th RD50 Workshop - PDC discussion

Why MCz-p is different from MCz-n and why Epi-n 50Ωcm don't undergo SCSI after neutron irradiations?

Hypotesis: Fermi level effect due to shallow dopants in p-type (no acceptor removal): The same defects are present as expected from n-type what is different is their occupation – they don't show!

A possible solution is high resistivity p type material (Epi-p, MCz-p). Maybe the concentration of shallow dopants will be low enough to observe the same behavior as for MCz-n – effective donor generation!

CCE comparisson

Probing of material type

- Probing material type
 - TCT
 - Annealing curve shape
 - Neutrons introduce negative space charge, so adding them to
 - p-type material -> V_{fd} increases
 - \blacksquare n-type material -> V_{fd} decreases

We also need to do some mixed irradiations to check for any surprises and simulate SLHC detector! (are there any fully annealed MCz-p type that you can miss?)

To do

- Mixed irradiations
- Isochronal annealing (60,80,100,120,140 °C...) measurement of trapping !
- Conversion list pad detector -> different segmented devices (shaping times of amplifiers)
 Bistability with ⁹⁰Sr
- Non-uniformity of MCz before irradiations
- Revision of CV measurements (freq., T) for high fluences