

CCE measurements and annealing studies on proton irradiated p-type MCz diodes

Herbert HoedImoser^a, Michael Moll^a, Michael Koehler^b, Henri Nordlund^c a: CERN, b: University Siegen, c: Helsinki Institute of Physics

> RD50 Workshop CERN, 16. 10. 2006

Contents

- CCE setup
- CCE Measurements on irradiated p-type MCz
- CV/IV characterization of irradiated p-type MCz
- Differences in reverse-annealing due to thermal donors

300 µm MCz by Okmetic Processing: ITC-IRST square MG diodes n⁺/p (batch SMART2)

W066 – series: p-spray dose = $3 \times 10^{12} \text{ cm}^{-2}$ W182 – series: p-spray dose = $5 \times 10^{12} \text{ cm}^{-2}$ 8 diodes with $V_{DEP} = 8 \text{ to } 17 \text{ V}$ 8 diodes with $V_{DEP} = 97 \text{ to } 110 \text{ V}$

After being processed together the two wavers were inhomogeneous: Differences in V_{DEP} between the wavers and between different locations on the waver due to inhomogeneous TD generation according to talk by D. Menichelli, at the Hamburg-Workshop;

Irradiation: 24 GeV/c protons @ CERN/PS up to $\Phi = 10^{16}$ cm⁻²

Die dimension: (5920 μm)² Diode area (p+ implant): 13.688 mm² Metal hole area: 4.524 mm² (Φ 2.4 mm) 1 Large guard (~90 μm) + 10 float rings

CCE system

bias: up to 1000 V guard ring: connected to ground

noise: 567e- + 4.26 e- /pF

trigger rate with ^{90}Sr source: $\approx 50\text{-}60~\text{Hz}$

control software: labview

NIKHEF CCE system © Fred Hartjes

signal shaping time: 2.5 µs

gain calibration factor: 245 e⁻/mV

temperature: down to -30 °C with fridge + peltier

CCE: measurement & analysis

pedestal events: < 2%

RD50

separate pedestal measurement to deconvolute gaussian noise fror signal

NIKHEF CCE analysis software

automatic Landau fit and noise deconvolution

Measurements performed for the investigations

- CCE: measured at -10°C (-25°C for highly irradiated diodes)
- CV: measured at -10^oC and at room temperature (RT)
- IV: measured at -10°C and at room temperature (RT)
- Annealing: at 80°C

T-dependence of measurements!

CCE as a function of fluence

Annealing: CCE

RD50 Workshop 06: CERN 16.10. 2006

Annealing: CCE

Herbert HoedImoser

Leakage current

IV measurements @ room temperature

RD50 Workshop 06: CERN 16.10. 2006

RD50 Annealing: leakage current

Annealing @ 80°C; measurements at room temperature

Measurement of the current related damage rate α as a function of annealing time:

$$\Delta I = \alpha \, \Phi_{eq} \, V$$

Comparison with parametrization of α :

$$\alpha(t) = \alpha_I \cdot exp\left(-\frac{t}{\tau_I}\right) + \alpha_0 - \beta \cdot ln\left(t/t_0\right)$$

T_a	α_I	$ au_I$	α_0	β	t_0
[°C]	10^{-17} A/cm	[min]	$10^{-17} {\rm A/cm}$	10^{-18} A/cm	[min]
21	1.23	1.4×10^4	7.07	3.29	1
49	1.28	260	5.36	3.11	1
60	1.26	94	4.87	3.16	1
80	1.13	9	4.23	2.83	
106	—	_	3.38	2.97	1

RD50 Workshop 06: CERN 16.10. 2006

annealing time [min] at 80 deg C

Currents corrected to reference temperature!

RD50 Workshop 06: CERN 16.10. 2006

RD50

V_{DFP} as a function of fluence

RD50

Annealing: V_{DEP}

IRST-W066-22 irradiation: $\Phi = 3.5 \times 10^{14} \text{ p/cm}^2$

Annealing: V_{DEP}

Evaluation of change in effective doping concentration as a function of fluence

Difference between w066 and w182 series presumably due to TDs: Depletion voltage before irradiation \approx 10 x higher for w182!

Reverse annealing of W066 series (higher TD concentration) is delayed:

Effect confirmed with independent evaluation of $V_{\mbox{\tiny DEP}}$ by CV and CCE

V_{DEP} by CCE

\mathbf{V}_{DEP} by CV

Reverse annealing of W066 series is delayed

Comparison of reverse-annealing time constants

 CCE/CV/IV measured for p-type MCz diodes irradiated up to fluences of 10¹⁶ 24 GeV/c p/cm⁻²

CCE(300V): 93% @ 1.2E14 p/cm² (7.4E13 1MeV/c n/cm²) 55% @ 1.1E15 p/cm² (6.8E14 1MeV/c n/cm²)

• Annealing of an irradiated diode changes depletion voltage and leakage current but not CCE

• TDs seem to influence reverse-annealing: higher TD concentration \rightarrow delayed reverse-annealing?

• Plan: systematic study of this effect by deliberate activation of TDs in p-type MCz.

backup slide Evaluation V_{DEP}

V_{DEP} by CCE @ -10^oC

RD50

V_{DEP} by CV @ RT

evaluation by CCE usually leads to higher values of VDEP than CV: differences tue to T dependencies and slow CCE measurement

RD50 backup slide CCE: comparison to CV

....considering the T-dependencies in the measurements of irradiated detectors!

backup slide CCE(fluence)

Reverse annealing for different fluences:

Correction of the measured currents for T-dependency:

RD50

RD50 backup slide CCE: measurement & analysis

temperature: -10 °C bias: 200 V

pedestal measurement

deconvoluted landau distribution

RD50 Workshop 06: CERN 16.10. 2006

FRN

