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Context: QCD phase diagram/ Quark Gluon Plasma

Complete QCD phase diagram far from being confirmed:

T # 0, ;1 = 0 well-established from lattice: no sharp phase transition,
continuous crossover at T, ~ 154 +9 MeV (Aoki et al '06).

Goal: more analytical approximations, ultimately in regions not much
accessible on the lattice: large density (chemical potential) due to the
(in)famous “sign problem”



Introduction/Motivations
Context: (unconventional) resummation of perturbative expansions

Very general: relevant both at T =0 or T # 0 (and finite density)

— addresses well-known problems of unstable +badly scale-dependent
thermal perturbative expansions:

lllustrate here T # 0 o model, + (preliminary) QCD (pure glue)

NB Previous results (T = 0):

estimate with our RGOPT approach the order parameter
Fr(mq = 0)/A2SP,
Fr ~ 92.2MeV — Fr(mg = 0) — AJ i ¥ (u = my).

N3LO: Fo~% /N3 ~ 0.25 + .01 — as(myz) ~ 0.1174 + .001 + .001
(JLK, A.Neveu, PRDSS (2013))

(compares well with latest (2016) s lattice and world average values
[PDG2016])

Also applied to (gq) at N3LO (using spectral density of Dirac operator):
(Gq)m—o(2GeV) ~ —(0.84 £0.01)Ags  (JLK, A.Neveu, PRD 92 (2015))
(compares well with latest most precise lattice value.)



T # 0: perturbative Pressure (QCD or A¢*)

Long-standing problem: poorly convergent and very scale-dependent
(ordinary) perturbative expansion

1.0

Pressure/(Ideal Pressure)

QCD (pure glue) pressure at successive (standard) perturbation orders
shaded regions: scale-dependence for 7T <y < 47T
(illustration from Andersen, Strickland, Su '10)



(Variationally) Optimized Perturbation (OPT)

Trick (T = 0): add and subtract a mass, consider m¢ as interaction:
Locp(g,m) = Locp(0 g, m(1 —0)) (e.g. in QCD g = 4was)

where 0 < 6 < 1 interpolates between L. and massless Lin:;
e.g. (quark) mass my — m: arbitrary trial parameter

e Take any standard (renormalized) QCD pert. series, expand in 0 after:
mg—m(l—9);, g—0g
then take § — 1 (to recover original massless theory):

BUT a m-dependence remains at any finite §%-order:
fixed typically by stationarity prescription: optimization (OPT):
%(physical quantity) = 0 for m = mgp(as) # O:

oT = 0: exhibits dimensional transmutation: Mop:(g) ~ e~ o"st-/8

oAt T # 0, same idea dubbed “screened perturbation” (SPT), or “hard
thermal loop (HTLpt) resummation”, etc.
But does this 'cheap trick’ always work? and why?



Expected behaviour (Ideally...)

Physical quantity

Exact result
2d order (non-perturbative)

OPT 1st order

o(A)

But not quite what happens... except in simple models:
eConvergence proof of this procedure for D = 1 g¢* oscillator
(cancels large pert. order factorial divergences!) Guida et al '95

particular case of 'order-dependent mapping’' Seznec, Zinn-Justin '79

eBut in QFT: multi-loop calculations (specially T # 0) (very) difficult

beyond first order:

— what about convergence? not much apparent in fact

eMain pb at higher order: OPT: Op(...) = 0 has multi-solutions (some
complex!), how to choose right one, if no nonperturbative “insight??



RG compatible OPT (= RGOPT)

Our main additional ingredient to OPT (JLK, A. Neveu 2010):

Consider a physical quantity (i.e. perturbatively RG invariant)
(in present context, will be the pressure P(m, g, T)):

in addition to OPT Eq: 52 P )(m, g,6 = 1)| = =0,
Require (d-modified!) series at order 6% to satisfy a standard
(perturbative) Renormalization Group (RG) equation:

RG (P(k)(m,g,(5 = 1)) =0

with standard RG operator (g = 4mas for QCD):

40 P 0
RG:/LTN—H@+B(g)@_7m(g)m%
B(g) = —bog? — big® + -+, Ym(g) =08 + 118+

— Additional nontrivial constraint (even if started from RG invariant
standard perturbation)



RG compatible OPT (RGOPT)

— Combined with OPT, RG Eq. reduces to massless form:

9 91 pty _ -
g+ Ble) 5| POmg.0=1) =0

Note: using OPT AND RG completely fix m = m and g = 3.

But Aws(g) satisfies by def.:
[,u% + B(g)%] Aas = 0 consistently at a given pert. order for 3(g).

Thus equivalent to:

13} Pk(m,g,6:1)> d (Pk(m,g,(S:l)) _
— | ——=——)=0;, —(—F——~—=)=0form,
om ( =F 9g \ " Nus(e) ¢

Optimal m, g = 4was unphysical: final (physical) result from P(m, g, T)

At T = 0 reproduces at first order exact nonperturbative results in
simpler models [e.g. Gross-Neveu model]



OPT 4+ RG = RGOPT main new features

oStandard OPT: embarrassing freedom (a priori) in interpolating form:
e.g. why not m — m(1—4)?7

Most previous works: linear case a = 1 for simplicity

but generally (we have shown) a = 1 spoils RG invariance!

eOPT,RG Eqgs: many solutions at increasing 6%-orders

— Our approach restores RG, +requires OPT, RG sol. to match
standard perturbation (e.g. Asymptotic Freedom for QCD (T = 0)):
as — 0, p — oo: g:47r6¢5~m+~-~

— At arbitrary order, AF-compatible RG + OPT branch, often unique,
only appear for a critical universal a:

m—)m(l—é)%g (e.g. 22(QCD,ns =3) = 4

— Goes beyond simple “add and subtract” trick

+ It removes spurious solutions incompatible with AF

— But does not always avoid complex solutions

(if those (perturbative artifacts) occur, are possibly cured by
renormalization scheme change [JLK, Neveu '13])



Problems of thermal perturbation: g¢* model

go* pressure at successive pert. orders: poorly convergent and badly
scale dependent (just like for QCD)
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Problems of thermal perturbation (QCD and generic)
Main culprit: mix up of hard p ~ T and soft p ~ asT modes.

Thermal 'Debye’ screening mass m? ~ as T2 gives IR cutoff,
BUT = perturbative expansion in /ag in QCD
— advocated slower convergence

Yet many interesting QGP physics features happen at not that large
as( = 2w T.) ~ .5 or lower values.

Many efforts to improve this (review e.g. Blaizot, lancu, Rebhan '03):

Screened PT (SPT) (Karsh et al '97), ~ Hard Thermal Loop (HTL)
resummation (Andersen, Braaten, Strickland '99); Functional RG, 2-particle
irreducible (2P1) formalism (Blaizot, lancu, Rebhan '01; Berges, Borsanyi,
Reinosa, J. Serreau '05)

RGOPT T # 0: essentially treats thermal mass 'RG consistently’:
— it induces an anomalous dimension, treated RG-consistently.

(NB some qualitative connections with 2PI results, also with recent “massive
scheme” approach (Blaizot, Wschebor '14)



Previous T # 0: two-loop RGOPT(g¢*) vs standard PT and SPT

1 4
0.98] NS —
X
Z pert.1 loop
n?o.%\sy pert. 2 loop
= SPT 2 loop
0.94f---
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0.92|— RGOPT I loop
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[JLK, M.B Pinto, PRL 116 (2016) [1507.03508]; PRD92 (2015)]

eDefinite scale-dependence improvement (a factor ~ 3) w.r.t. SPT
[J.0. Andersen et al '01]

elmprovement should be more drastic at 3-loops, where SPT scale
dependence strongly increases.

How this is obtained: details next for the nonlinear o model



One step closer to QGP: O(N) nonlinear 0 model (NLSM)

[G. Ferreri, JLK, M.B. Pinto, R.0 Ramos, to appear on arXiv very soon]

(1+1)D NLSM shares many properties with QCD: asymptotic freedom,
mass gap, T # 0 pressure, trace anomaly have QCD-similar shape
Other nonperturbative T # 0 results available for comparison

(lattice [Giacosa et al '12], 1/N expansion [Andersen et al '04], others)

_ Loy, &mOm)?®  mpo a2
£0—2(37T,) +2(1*g7f,-2) 2 [(1 gm7) 1]

two-loop pressure from: O OO O @

eAdvantage w.r.t. QCD: exact T-dependence at 2-loops:

(N-1) (N—-13)
Y

Ppert.2loop = - 2 |:I(§(ma T) +

m?gl; (m, T)Q} + &,

Io(m, T) = Ti In [(27nT)? + p? + m?] = % (m*(1=1n )+ 4T2J0($))
n,p

Jolx) = Jy~ dztn (1= eVF5F), y(m, T) = Olo(m, T)/0nr”



First crucial step: standard perturbative RG invariance

Eo in Pa_jo0p: finite (T-independent) vacuum energy contribution:

&g, m) = —m? (2—° +s51+ 58+ ) such that M_%:&, cancels the
remnant M dependence:

(N—1)

S0 = Zx(bo—270)

=1, s1= (b1 —27)3% =0 (NB: accident of NLSM)
oNext step: m?> — m?(1—0)? ; g — ig;
expand in §; then § — 1:

oRG only consistent for a = 279/by = (N — 3)/(N — 2)/2 for NLSM
(# 1 as in SPT/HTLpt)

eAnother practical bonus: non-trivial OPT mass gap m(g, T) already at
one-loop

eAim: illustrate in NLSM the scale dependence (and other)
improvements wrt former SPT~ HTLpt



One-loop RGOPT (O(4°)) for NLSM pressure

Exact (arbitrary T) OPT “thermal mass gap” m from 9,,P(m) = 0:

m 1 m N-—-2
W™= (™, (=2
W ey ) (B or )
or more explicitly, for T =0: m = pe st —/\1 loop
and for T > m:
m mhy g 9 pelE
—=——"—~7h @) Lr =1
T =1 bogly =" 0g(n) +0(g%), (Lr=In"——)

—2

N—-1
prcort = WV sy 1 X ran)|. c=mm)
e Standard one-loop running: g (1) = g 1(Mo) + bo In -
= m, P(/m) are explicitly 'exactly’ (one-loop) scale-invariant

o+ It reproduces exact (all orders) known large N results
(Andersen et al '04)



RGOPT NLSM mass and pressure: two-loop order
P/Psg(N = 4, g(Mp) = 1) vs standard perturbation (PT), large N (LN),
and SPT = ignoring RG-induced subtraction; m?> — m?(1 — §):

RGOPT 2L 1

==== RGOPT 1L

0.0 0.5 1.0 15 20

(shaded range: scT:é'I\ggdependence 7T <u=M<A4rT)
— A moderate scale-dependence reappears, from unperfectly matched
2-loop T = 0 standard running coupling.
NB for 2-loop NLSM, alternative g(u) from combining RG+OPT
accidentally gives g = 0... (traced to 2-loop subtraction s; = 0)
(not expected in other models, and nontrivial NLSM g(u) appears at 3-loop)

Generically: RGOPT at O(g*) — m(u) appears at O(g**!) for any m,
but m ~ gT — P~ m?/g + --- has leading ;i-dependence at O(gk+?).



High T: pressure shape more comparable to QCD HTLpt

p2=loop N p2-loop B 3 (N—3) 5
A~ L =1- 358 +0(g)

T/To
(NB: RGOPT 1,2L reach SB limit for T — oo but more slowly than PT)

HTLpt (beyond 1-loop only T >> m approximation): QCD (pure glue)
[Andersen, Strickland, Su '10]:
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RGOPT(NLSM) lattice comparison

eNLSM T # lattice simulations: (apparently) only available for N = 3 [E.
Seel, D. Smith, S. Lottini, F. Giacosa "12]

eRemind: at 2-loop NLSM combined RG +OPT Egs. gives no nontrivial
g(m) by accident (traced to s; = 0), yet one remarkable value:
g(My) =27 = m(g) = My (NB similar feature in Gross-Neveu model)

eDrawback: for such large coupling , 2-loop RGOPT remnant scale
dependence becomes much more sizable.
(at 3-loop order g(m) would likely be more reasonable)

1.0

0.8
nf 08
& 04 —uw
4 RGOPT 2L
0.2 g ===+ RGOPT 1L
=es Latice
0.0
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T/Mo

shaded regions: scale-dependence 7T < p= M < 4nT
(Notice: N = 3 lattice pressure appears very close to large-N for low T < Mp)



NLSM interaction measure (trace anomaly)

RGOPT 2L
---- RGOPT 1L

N = 4, g(Mo) =1 (shaded regions: scale-dependence 7T < p=M < 4xT )
e2-loop SPT A small, monotonic behaviour + sizeable scale dependence.

eRGOPT shape 'qualitatively’ comparable to QCD, showing a peak
(but no spontaneous sym breaking/phase transition in 2D NLSM
(Mermin-Wagner-Coleman theorem)



Thermal (pure glue) QCD: hard thermal loop formalism
QCD generalization of OPT = HTLpt [Andersen, Braaten, Strickland '99]:
same "OPT" trick operates on a gluon “mass” term [Braaten-Pisarski '90]:

yy?

(v.D)?

2
Cocogauge) 2 T |60 555),65] . 0" =i, v = (19)

(effective, gauge-invariant):

describes screening mass m?, ~ as T2, but also many more 'hard thermal
loop™ contributions [modifies vertices and gluon propagators in highly
nontrivial way]

Other gluon “mass prescriptions” exist [e.g. Reinosa et al '15] but HTLpt
nice advantage: calculations up to 3-loop a2 (NNLO) [Andersen et al
'909-"15]: highly nontrivial, available analytically as mp/ T expansions,
neglecting consistently higher orders [e.g. mpas = O(ad)].

HTLpt
& Pl loop,ms
7

2
2T 5)

1— Bm2 4+ 30m3 + L mb(

. b
Pldeal T

Mp = 577, Pigeal = (N = 1) {5



standard HTLpt results: m? — m%(1 — 4)
(pure glue) [Andersen, Strickland, Su '10]
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Reasonable agreement with lattice occurs at NNLO (3-loop), down to
T ~2—3T,, for low scale p ~ 7T —27T.

Unfortunately, exhibits a scale dependence worsening at higher order
(generic trend also when introducing quarks and chemical potential].

Moreover HTLpt (frequent) mass prescription M — m>™ (as) [to avoid

complex optimized solutions]: may miss more “nonperturbative”
information.



RGOPT adaptation of HTLpt

Jo
Our main changes: RG-induced subtractions, + take m% (1 — &) %, where
gluon 'mass’ anomalous dimension defined (as it should) from its
(known) counterterm.

RGOPT scale dependence should improve at higher orders from basically
consistent RG invariance:

both from subtraction terms (prior to interpolation), and from above
interpolation maintaining RG invariance.

Yet HTLpt scale dependence moderate at 2-loop:

— Because the (leading order) missing subtraction, of O(m},sy/as), acts
formally like a (3-loop order) a% term:

— explains why scale dependence plainly resurfaces at 3-loops.



Preliminary RGO(HTL) (1- and 2-loop, pure glue) results

One-loop: obtain exactly scale-invariant pressure (like for ¢* and NLSM):
P_(G)=1-5G-15G2(2G + 1)+ LV3[G(1+3G)* + -

Pideal
where G(bpas(tig)) a reference coupling;

2-loops: moderate RGOPT scale-dependence similar to ¢*, NLSM case:

P/Pideal
“HTLpt 2-loop

HTLpt 3—Iog3//"’/

(Preliminary!)

: : : ; T

[JLK, M.B Pinto, to appear soon]
Scale dependence improvement should be more drastic at 3-loops,
but genuine low T ~ T, pressure shape needs determining higher order
subtraction terms (requires more involved new calculations of 2-loop
integrals) to get terms of O(m}as In ), neglected in standard HTLpt
since formally O(a3) [work in progress]



Summary and Outlook

oOPT gives a simple procedure to resum perturbative expansions, using
only perturbative information.

eOur RGOPT version includes 2 major differences w.r.t. previous
OPT/SPT/HTLpt... approaches:

1) OPT+ RG minimizations fix optimized m and possibly § = 4més

2) Requiring AF-compatible solutions uniquely fixes the basic
interpolation m — m(1 — §)7/be: discards spurious solutions and
accelerates convergence.

(T =0: O(10%) accuracy at 1-2-loops, empirical stability exhibited at
3-loop)

Applied to T # 0: exhibits improved stability + scale independence (with
respect to standard PT, but also wrt SPT ~ HTLpt)

ePaves the way to extend reliability of such methods to full QCD
thermodynamics, (work in progress, start with T % 0 pure gluodynamics)
specially for exploring also finite density



