Thermodynamically consistent formulation of quasiparticle viscous hydrodynamics

Radoslaw Ryblewski

details: L. Tinti, A. Jaiswal, R.R., Phys. Rev. **D95** 5, 054007 (2017)

Excited QCD May 7–13, 2017, Sintra, Portugal

Radoslaw Ryblewski (IFJ PAN) 1 May 10, 2017

1 / 15

Hydrodynamic description of heavy-ion collisions

- if the thermal equilibrium is achieved locally in heavy-ion collisions the fluid dynamics (a.k.a. hydrodynamics) may be applied
- usually constructed as an order-by-order expansion around equilibrium state in powers of thermodynamic gradients
 - 0th order ideal fluid dynamics
 - 1st order Navier-Stokes theory (parabolic PDE, acausal, unstable)
 - 2nd order Israel-Stewart theory (hyperbolic PDE, causal, stability not guaranteed)
- the universal existence of the viscous effects in Nature as well as the increasing precision of flow measurements at the LHC suggest necessity of using relativistic viscous hydrodynamics (VH)
- multiple successes of the VH description of the space-time evolution of the QGP
- form of VH equations is not universal most often simple relativistic kinetic theory (KT) is used

Hydrodynamic modelling ingredients

 to model QGP evolution within VH one needs to incorporate its properties through the transport coefficients (shear viscosity, bulk viscosity, etc.) and equation of state (EOS)

$$\begin{split} \dot{\mathcal{E}} &= - \left(\mathcal{E} + \mathcal{P} \right) \theta - \Pi \, \theta + \pi : \sigma, \\ \nabla^{\mu} \mathcal{P} &= \left(\mathcal{E} + \mathcal{P} \right) \dot{\upsilon}^{\mu} + \Pi \, \dot{\upsilon}^{\mu} - \nabla^{\mu} \Pi + \Delta^{\mu}_{\alpha} \partial_{\beta} \pi^{\alpha\beta} \\ \dot{\Pi} &= - \frac{\Pi}{\tau_{\Pi}} - \beta_{\Pi} \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi : \sigma \\ \dot{\pi}^{\langle \mu \nu \rangle} &= - \frac{\pi^{\mu \nu}}{\tau_{\pi}} + \beta_{\pi} 2 \sigma^{\mu \nu} + 2 \pi^{\langle \mu}_{\gamma} \omega^{\nu \rangle \gamma} - \tau_{\pi\pi} \pi^{\langle \mu}_{\gamma} \sigma^{\nu \rangle \gamma} - \delta_{\pi\pi} \pi^{\mu \nu} \theta + \lambda_{\pi\Pi} \Pi \sigma^{\mu \nu} \end{split}$$

- much of the research in the field is devoted to the extraction of these properties
- in principle they should be extracted from the experimental data
- usually one incorporates some results of ab-initio calculations done within lattice QCD (IQCD) framework

10 PDE for
$$T$$
, u^{μ} , Π , $\pi^{\mu\nu}$

$$\mathcal{E}(T) = ? \quad \mathcal{P}(T) = ? \quad \text{precise IQCD EOS results}$$

 $\beta_\Pi \tau_R = \zeta(T) = ?$ and $\beta_\pi \tau_R = \eta(T) = ?$ some IQCD results, **too large uncertainties!** <the rest of transport coefficients>(T) = ? no idea

 in general it is a highly non-trivial task – multidimensional fit, numerically expensive calculations

way out?

Kinetic-theory-wise approach

- one typically resorts to a simple KT to derive the VH equations of motion (EOM)
- consider a system of ideal (non-interacting) uncharged massive particles of a single species

$$m = const$$

- ullet the EOS of such a system depends parametrically only on the mass (\emph{m}) of the particle
- impossible to reproduce exactly the temperature (T) dependence of energy density (ε) and pressure (P) given by IQCD

example: Maxwell-Boltzmann distribution

$$f_{\text{eq}} = g \exp[-\beta(u \cdot p)] \quad \Rightarrow \qquad \mathcal{E}_0 = \frac{g T^4 z^2}{2\pi^2} \left[3 \textit{K}_2(z) + z \textit{K}_1(z) \right] \qquad \mathcal{P}_0 = \frac{g T^4 z^2}{2\pi^2} \textit{K}_2(z)$$

 $\beta \equiv 1/T$; $z \equiv m/T$ K_0 – Bessel functions

Imposing arbitrary EOS through quasiparticle mass

 to describe an arbitrary EOS consider T-dependent mass V. Goloviznin and H. Satz, Z. Phys. C57, 671 (1993)

$$m = const \rightarrow m = m(T)$$

- physically sound when considering high-T QCD ($m(T) = g_s T$) E. Bragten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990)
- in general these quasi-particles do not correspond to any real excitations of the underlying fundamental theory (QCD) – especially close to the crossover region!

Thermodynamic consistency violation

- introducing m = m(T) violates basic thermodynamic identities
 M. I. Gorenstein and S.-N. Yang, Phys. Rev. D52, 5206 (1995)
- the thermodynamic relation must be satisfied

$$S_0 \equiv \frac{dP_0}{dT} = \frac{E_0 + P_0}{T}$$

within KT one has

$$\mathcal{E}_0 = u \cdot T_{eq} \cdot u$$

$$\mathcal{P}_0 = -\frac{1}{3}\Delta: \mathcal{T}_{eq}$$

where

$$T_{\rm eq}^{\mu\nu} = \int dP \, p^{\mu} p^{\nu} \, f_{\rm eq}$$

$$\begin{split} p \cdot t &\equiv p_{\mu} t^{\nu} \\ A : B &\equiv A^{\mu\nu} B_{\mu\nu} \\ \Delta^{\mu\nu} &\equiv g^{\mu\nu} - u^{\mu} u^{\nu} \\ \int dP &= \int \frac{d^{4}p}{(2\pi)^{4}} \, 2 \, \Theta(p \cdot t) \, (2\pi) \, \delta(p^{2} - m^{2}) \end{split}$$

 example: Maxwell-Boltzmann distribution

$$f_{eq} = g \exp[-\beta(u \cdot p)]$$

$$\mathcal{E}_{0} = \frac{gT^{4}z^{2}}{2\pi^{2}} \left[3K_{2}(z) + zK_{1}(z) \right]$$

$$\mathcal{P}_{0} = \frac{gT^{4}z^{2}}{2\pi^{2}} K_{2}(z)$$

• if $m = \text{const} \rightarrow m = m(T)$

$$\frac{d\mathcal{P}_0}{dT} = \frac{gT^3z^2}{2\pi^2} \left[4K_2(z) + zK_1(z) - \frac{dm}{dT} K_1(z) \right]$$
$$= \frac{\mathcal{E}_0 + \mathcal{P}_0}{T} - \underbrace{m \frac{dm}{dT} \int dPf_{eq}}_{\neq 0}$$

Restoring thermodynamic consistency

 restore thermodynamic consistency by introducing additional effective mean field through a **bag function** B₀(T)
 M. I. Gorenstein and S.-N. Yang, Phys. Rev. D52, 5206 (1995)

$$\mathcal{E}_0 \to \mathcal{E}_0 + B_0$$
 $\mathcal{P}_0 \to \mathcal{P}_0 - B_0$

 the thermodynamic relation must be satisfied

$$S_0 \equiv \frac{dP_0}{dT} = \frac{\mathcal{E}_0 + \mathcal{P}_0}{T}$$

with

$$\mathcal{E}_0 = u \cdot T_{\text{eq}} \cdot u$$
, $\mathcal{P}_0 = -\frac{1}{3}\Delta : T_{\text{eq}}$

- $B_0(T)$ may be included in the Lorentz covariant way by modifying the definition of $T_{\rm eq}^{\mu\nu}$
 - S. Jeon, Phys. Rev. D52, 3591 (1995)
 - S. Jeon and L. G. Yaffe, Phys. Rev. D53, 5799 (1996)
 - P. Chakraborty and J. I. Kapusta, Phys. Rev. C83, 014906 (2011)
 - P. Romatschke, Phys. Rev. D85, 065012 (2012)
 - M. Albright and J. I. Kapusta, Phys. Rev. C93, 014903 (2016)

$$T_{\rm eq}^{\mu\nu} = \int dP \, p^{\mu} p^{\nu} \, f_{\rm eq} + B_0(T) \, g^{\mu\nu}$$

example: Maxwell-Boltzmann distribution

$$f_{eq} = g \exp[-\beta(u \cdot p)]$$

$$\mathcal{E}_{0} = \frac{gT^{4}z^{2}}{2\pi^{2}} \left[3K_{2}(z) + zK_{1}(z) \right] + B_{0}$$

$$\mathcal{P}_{0} = \frac{gT^{4}z^{2}}{2\pi^{2}} K_{2}(z) - B_{0}$$

• if $m = \text{const} \rightarrow m = m(T)$

$$\frac{d\mathcal{P}_0}{dT} = \frac{gT^3z^2}{2\pi^2} \left[4K_2(z) + zK_1(z) - \frac{dm}{dT} K_1(z) \right]$$
$$-\frac{dB_0}{dT}$$
$$= \frac{\mathcal{E}_0 + \mathcal{P}_0}{T} - \left(\frac{dB_0}{dT} + m \frac{dm}{dT} \int dP f_{eq} \right)$$

• $\partial_{\mu}T_{\text{eq}}^{\mu\nu}=0$ gives the same condition

7 / 15

Imposing IQCD EOS

- to solve EOM one has to impose EOS
- necessary to fix the T dependence of the thermodynamic quantities
- it is sufficient to define m(T)P. Romatschke, Phys. Rev. D85, 065012 (2012)
- consider finite-T IQCD EOS at μ_B = 0 by the Wuppertal-Budapest collaboration S. Borsanyi et al., JHEP 11, 077 (2010)

 degeneracy factor g is obtained by reproducing correct Stefan–Boltzmann limit requires fixing

$$g = \frac{\pi^4}{180} \left(4(N_c^2 - 1) + 7N_c N_f \right)$$

$$N_C = 3$$
, $N_f = 3$

• m(T) is determined from equilibrium entropy density, $S_0 = (\mathcal{E}_0 + \mathcal{P}_0)/T$ (independent of B_0) by numerically solving

$$\frac{g}{2\pi^2} \left(\frac{m(T)}{T} \right) K_3 \left(\frac{m(T)}{T} \right) = \left. \frac{S_0(T)}{T^3} \right|_{\text{IQCD}}$$

 B₀(T) is given through the relation expressing thermodynamic consistency

$$\frac{dB_0(T)}{dT} = -\frac{gT^3z^2}{2\pi^2}K_1(z)\frac{dm}{dT}$$

Off-equilibrium mean field

 for the non-equilibrium case one can have in general
 L. Tinti, A. Jaiswal, R.R., Phys. Rev. D95 (2017) no.5, 054007

$$T^{\mu\nu} = \int dP \, p^{\mu} p^{\nu} \, f \, + B^{\mu\nu}$$

- in equilibrium ($f \rightarrow f_{eq}$) we require $B^{\mu\nu}|_{eq} = B_{n} g^{\mu\nu}$
- out of equilibrium $(f \rightarrow f_{eq} + \delta f)$ we split

$$B^{\mu\nu} = B_0 g^{\mu\nu} + \delta B^{\mu\nu}$$

• $\delta B^{\mu\nu}$ is fixed by requiring $\partial_{\mu}T^{\mu\nu}=0$

$$\begin{split} & \partial_{\mu}B^{\mu\nu} + m\partial^{\nu}m\int dPf \\ & + \int dP\,p^{\nu}\Big[(p\cdot\partial)f + m(\partial^{\rho}m)\,\partial^{(p)}_{\rho}\,f\Big] = 0 \end{split}$$

 the effective Boltzmann equation (BE) for m = m(T) reads
 W. Florkowski, J. Hufner, S. P. Klevansky, and L. Neise, Annals Phys. 265. 445 (1996)

P. Romatschke, Phys. Rev. D85, 065012 (2012)

$$(p \cdot \partial)f + m(\partial^{\rho}m)\partial_{\rho}^{(p)}f = C[f]$$

 we assume the collision kernel in the relaxation-time approximation (RTA) J. Anderson and H. Witting, Physica 74, 466 (1974)

$$C[f] = -\frac{(u \cdot p)}{\tau_{P}} \delta f$$

Ansatz for off-equilibrium field

 energy and momentum conservation becomes

$$\partial_{\mu}\delta\!B^{\mu\nu}+m\partial^{\nu}m\int dP\,\delta\!f+\frac{1}{\tau_{R}}u_{\mu}\delta\!B^{\mu\nu}=0$$

• if $\delta B^{\mu\nu} = 0$ it reduces to

$$-3 m (\partial^{\nu} m) \Pi = 0$$

 for m = m(T) the bulk pressure Π is nonvanishing which means that in general we must have

$$\delta B^{\mu\nu} \neq 0$$

- the symmetry of $T^{\mu\nu}$ restricts $\delta\!B^{\mu\nu}$ to have 10 independent components
- $\partial_{\mu}T^{\mu\nu}=0$ leads to only 4 constraints
- we make an **ansatz for** $\delta B^{\mu\nu}$ of the form

$$\delta B^{\mu\nu} = b_0 g^{\mu\nu} + u^{\mu}b^{\nu} + b^{\mu}u^{\nu}$$

$$u \cdot b = 0$$

- at first order in the gradient expansion one gets $b_0=0$ and $b^\mu=0$
- up to second-order one has

$$b_0 = -3\,\tau_R\,\kappa\,c_s^2\,\Pi\,\theta,\quad b^\mu = 3\,\tau_R\,\kappa\,\Pi\,\dot{u}^\mu$$

Tensor decomposition of E-M tensor

• $T^{\mu\nu}$ may be tensor decomposed into

$$T^{\mu\nu} = \mathcal{E} U^{\mu} U^{\nu} - (\mathcal{P} + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$$

• four-momentum conservation gives EOM for u^{μ} and T

$$\dot{\mathcal{E}} = -(\mathcal{E} + \mathcal{P}) \,\theta - \Pi \,\theta + \pi : \sigma,$$

$$\nabla^{\mu} \mathcal{P} = (\mathcal{E} + \mathcal{P}) \,\dot{u}^{\mu} + \Pi \,\dot{u}^{\mu} - \nabla^{\mu} \Pi + \Delta^{\mu}_{\sigma} \partial_{\beta} \pi^{\alpha\beta}$$

$$\begin{split} \sigma^{\mu\nu} &\equiv \Delta^{\mu\nu}_{\alpha\beta} \nabla^\alpha \, \mathsf{U}^\beta \\ \Delta^{\mu\nu}_{\alpha\beta} &= \tfrac{1}{2} \big(\Delta^\mu_\alpha \Delta^\nu_\beta + \Delta^\mu_\beta \Delta^\nu_\alpha - \tfrac{2}{3} \Delta^{\mu\nu} \Delta_{\alpha\beta} \big) \end{split}$$

• bulk pressure Π and shear-stress tensor $\pi^{\mu\nu}$ are defined as

$$\begin{split} & \Pi \equiv -\frac{1}{3}\Delta: \left(T - T_{\text{eq}}\right) \\ & \pi^{\mu\nu} \equiv \Delta^{\mu\nu}_{\alpha\beta} \left(T^{\alpha\beta} - T^{\alpha\beta}_{\text{eq}}\right) = \Delta^{\mu\nu}_{\alpha\beta} \, T^{\alpha\beta} \end{split}$$

in our case they read

$$\begin{split} \Pi &= -\frac{1}{3} \Delta_{\alpha\beta} \int dP p^{\alpha} p^{\beta} \delta f - b_0 \\ \pi^{\mu\nu} &= \Delta_{\alpha\beta}^{\mu\nu} \int dP p^{\alpha} p^{\beta} \delta f \end{split}$$

 EOM of dissipative quantities are obtained by applying the co-moving derivative () ≡ (u · ∂)
 G. S. Denicol, T. Koide, and D. H. Rischke, Phys. Rev. Lett. 105,

G. S. Denicol, T. Koide, and D. H. Rischke, Phys. Rev. Lett. 105, 162501 (2010)

$$\begin{split} \dot{\Pi} &= -\frac{1}{3} \left(u \cdot \partial \right) \int dP \left(p \cdot \Delta \cdot p \right) \delta f - \dot{b}_0 \\ \dot{\pi}^{\langle \mu \nu \rangle} &= \Delta^{\mu \nu}_{\alpha \beta} \left(u \cdot \partial \right) \int dP \, p^{\langle \alpha} p^{\beta \rangle} \, \delta f \end{split}$$

$$X^{\langle\mu\nu\rangle} \equiv \Delta^{\mu\nu}_{\alpha\beta} X^{\alpha\beta} \qquad \qquad \dot{X}^{\langle\mu\nu\rangle} \equiv \Delta^{\mu\nu}_{\alpha\beta} \dot{X}^{\alpha\beta}$$

Evolution equations for dissipative quantities

 explicit second-order EOM for the dissipative quantities are obtained using the Chapman-Enskog-like

iterative solution of the BE for &f A. Jaiswal, Phys. Rev. C87 (2013) no.5, 051901

A. Jaiswal, R. Ryblewski, and M. Strickland, Phys. Rev. C90, 044908 (2014)

$$\begin{split} \dot{\Pi} &= -\frac{\Pi}{\tau_\Pi} - \beta_\Pi \theta - \delta_{\Pi\Pi} \Pi \theta + \lambda_{\Pi\pi} \pi : \sigma \\ \dot{\pi}^{\langle \mu \nu \rangle} &= -\frac{\pi^{\mu \nu}}{\tau_\pi} + 2\beta_\pi \sigma^{\mu \nu} + 2\pi_\gamma^{\langle \mu} \omega^{\nu \rangle \gamma} - \tau_{\pi\pi} \pi_\gamma^{\langle \mu} \sigma^{\nu \rangle \gamma} \\ &- \delta_{\pi\pi} \pi^{\mu \nu} \theta + \lambda_{\pi\Pi} \Pi \sigma^{\mu \nu} \end{split}$$

• the bulk and shear viscosities are given by $\beta_\Pi \tau_R = \zeta$ and $\beta_\pi \tau_R = \eta$ with

$$\beta_{\Pi} = \frac{5}{3} \beta I_{3,2} - c_s^2 (\mathcal{E} + \mathcal{P}) + \kappa c_s^2 m^2 \beta I_{1,1}$$

$$\beta_{\pi} = \beta I_{3,2}$$

- $\kappa \equiv \frac{T}{m} \frac{dm}{dT}$
- in the limit κ → 0 these match the constant mass results

$$\begin{split} \delta_{\Pi\Pi} &= -\frac{5}{9}\chi - \left(1 - \kappa m^2 \frac{I_{1,1}}{I_{3,1}}\right) c_s^2 \\ &+ \frac{1}{3} \frac{\beta \kappa C_s^2 m^2}{\beta \Pi} \left[\left(1 - 3c_s^2\right) \left(\beta I_{2,1} - I_{1,1}\right) \right. \\ &- \left(1 - 3\kappa c_s^2\right) m^2 \left(\beta I_{0,1} + I_{-1,1}\right) \right] \\ \lambda_{\Pi\pi} &= \frac{\beta}{3\beta_{\pi}} \left(2I_{3,2} - 7I_{3,3}\right) - \left(1 - \kappa m^2 \frac{I_{1,1}}{I_{3,1}}\right) c_s^2 \\ \tau_{\pi\pi} &= 2 - \frac{4\beta}{\beta_{\pi}} I_{3,3} \\ \delta_{\pi\pi} &= \frac{5}{3} - \frac{7}{3} \frac{\beta}{\beta_{\pi}} I_{3,3} - \frac{\beta}{\beta_{\pi}} \kappa c_s^2 m^2 \left(I_{1,2} - I_{1,1}\right) \\ \lambda_{\pi\Pi} &= -\frac{2}{3}\chi \end{split}$$

where

$$\chi = \frac{\beta}{\beta \Pi} \left[(1 - 3c_s^2) (l_{3,2} - l_{3,1}) - (1 - 3\kappa c_s^2) m^2 (l_{1,2} - l_{1,1}) \right]$$

12 / 15

Longitudinal Bjorken flow solution

 consider transversely homogeneous and purely-longitudinal boost-invariant (Bjorken) expansion
 J. D. Bjorken, Phys. Rev. D27, 140 (1983)

$$u^{\mu} = \gamma(1,0,0,\frac{Z}{4})$$

- all quantities are independent of ς and therefore unchanged when performing a Lorentz-boost – evolution only in τ!
- EOM reduce to

$$\begin{split} \dot{\mathcal{E}} &= -\frac{1}{\tau} \left(\mathcal{E} + \mathcal{P} + \Pi - \pi_s \right) \\ \dot{\Pi} &+ \frac{\Pi}{\tau_\Pi} &= -\frac{\beta_\Pi}{\tau} - \delta_{\Pi\Pi} \frac{\Pi}{\tau} + \lambda_{\Pi\pi} \frac{\pi_s}{\tau} \\ \dot{\pi}_s &+ \frac{\pi_s}{\tau_\pi} &= \frac{4}{3} \frac{\beta_\pi}{\tau} - \left(\frac{1}{3} \tau_{\pi\pi} + \delta_{\pi\pi} \right) \frac{\pi_s}{\tau} + \frac{2}{3} \lambda_{\pi\Pi} \frac{\Pi}{\tau} \qquad x^\mu = (t, x, y, z) \end{split}$$

where $\pi_s \equiv -\tau^2 \pi^{\zeta\zeta}$.

• the relaxation time is

$$\tau_{\pi} = \tau_{\Pi} = \tau_{R} = \frac{\bar{\eta} \mathcal{S}_{0}}{\beta_{\pi}}$$

use Milne coordinates

$$x^{\mu} = (t, x, y, z)$$

$$\downarrow \qquad \qquad z = \tau \sinh \varsigma$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x^{\mu\prime} = (\tau, x, y, \varsigma)$$

$$\tau = \sqrt{t^2 - z^2}$$

$$\varsigma = \tanh^{-1}\left(\frac{z}{t}\right)$$

• in x^{μ} the fluid becomes static, $u^{\mu} = (1,0,0,0)$

Longitudinal Bjorken flow

- study the evolution of viscous QCD matter by numerically solving EOM supplemented with the IQCD EOS
- we choose LHC initial conditions $T(\tau_i) = 0.6$ GeV, $\pi_s(\tau_i) = 0$, $\Pi(\tau_i) = 0$ at $\tau_i = 0.25$ fm
- in addition $\tau_f = 500$ fm, $\eta/S = 1/(4\pi)$
- we compare:
- quasiparticle second-order VH (QvHydro, this work)
- quasiparticle anisotropic hydrodynamics (QaHydro)
- standard second-order VH (vHydro)

$$\mathcal{P}_L = \mathcal{P}_0 + \Pi - \pi_s$$
$$\mathcal{P}_T = \mathcal{P}_0 + \Pi + \pi_s/2$$

Summary

- we have presented a first derivation of the second-order VH for a system of quasiparticles of a single species from an effective BE
- we devised a thermodynamically-consistent framework to formulate second-order EOM for Π and $\pi^{\mu\nu}$ for quasiparticles with T-dependent masses
- the presented formulation is capable of accommodating an arbitrary EOS within the framework of KT
- we studied the effect of this new formulation in the case of Bjorken expansion of viscous QCD medium

Thank you for your attention!

Backup slides

Imposing lattice QCD equation of state - details

 For numerical convenience, we use analytic fit to the IQCD results for the interaction measure (trace anomaly)

$$\begin{split} \frac{I_0(7)}{7^4} &= & \exp \Bigl[- \Bigl(\frac{h_1}{\hat{7}} + \frac{h_2}{\hat{7}^2} \Bigr) \Bigr] \\ & \times \biggl[\frac{h_0}{1 + h_3 \hat{7}^2} + \frac{f_0 \Bigl[\tanh(f_1 \hat{7} + f_2) + 1 \Bigr]}{1 + g_1 \hat{7} + g_2 \hat{7}^2} \Bigr] \end{split}$$

with $\hat{T} \equiv T/(0.2 \text{ GeV})$ and $h_0 = 0.1396$, $h_1 = -0.18$, $h_2 = 0.035$, $f_0 = 2.76$, $f_1 = 6.79$, $f_2 = -5.29$, $g_1 = -0.47$, $g_2 = 1.04$, and $h_3 = 0.01$

$$\frac{\mathcal{P}_0(T)}{T^4} = \int_0^T \frac{dT}{T} \frac{I_0(T)}{T^4}$$

$$\frac{\mathcal{E}_0(T)}{T^4} = 3\frac{\mathcal{P}_0(T)}{T^4} + \frac{I_0(T)}{T^4}$$

• $B_0(T)$ is given through the relation expressing thermodynamic consistency

$$\frac{dB_0(T)}{dT} = -\frac{gT^3z^2}{2\pi^2}K_1(z)\frac{dm}{dT}$$

The above equation can be solved numerically using the boundary condition $B_0 = 0$ at $T \simeq 0$.

Imposing lattice QCD equation of state in standard approach

- in the standard formulations of the second-order viscous fluid dynamics approaches the particle mass is treated as a constant parameter, m = const.
- In this case there is however no unambiguous prescription how to impose the lattice QCD equation of state in the dynamical equations.
- The usual methodology, which we call here standard, is to extract the m(T) dependence by matching squared speed of sound measured on the lattice using the following equation

$$c_s^2(T)\Big|_{\text{IQCD}} = c_s^2 \left(\frac{m(T)}{T}\right)\Big|_{\text{ideal gas (m=const.)}}$$

where on the right hand side we use the expression for c_s^2 valid in the case of ideal Boltzmann gas of particles with constant mass.

- Using m(T) extracted in this way one may also express all the second-order transport coefficients and the relaxation times $\tau_R = \bar{\eta} l_{3.1}/(l_{3.2}T)$.
- This method is however not applicable to the energy density and pressure and the first-order terms, which require the knowledge of the degeneracy factor g. For that reason for these quantities we use directly values from the lattice QCD calculations.