BESIII

The $9^{\text {th }}$ International workshop on Excited QCD Sintra, Portugal, May 2017

Outline

■The BESIII experiment
■Baryon structure, form factor measurement
■Hadron spectroscopy
$■$ Precision test on Standard Model, $(\mathrm{g}-2)_{\mu}$
■Lineshape of J/ Ψ resonance
■Summary

Beijing Electron Positron Collider

BEijing Spectrometer III

The BESIII data sample

Baryon form factor

\square The FFs are measured in space-like (SL) region or time-like (TL) region. The proton electromagnetic vertex Γ_{μ} describing the hadron current

$$
\begin{aligned}
& >\Gamma_{\mu}\left(p^{\prime}, p\right)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{p}} F_{2}\left(q^{2}\right) \\
& >G_{E}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\tau \kappa_{p} F_{2}\left(q^{2}\right) \\
& \Rightarrow G_{M}\left(q^{2}\right)=F_{1}\left(q^{2}\right)+\kappa_{p} F_{2}\left(q^{2}\right) \\
& >\mathrm{\tau}=\frac{\mathrm{q}^{2}}{4 \mathrm{~m}_{\mathrm{p}}^{2}}, \quad \kappa_{\mathrm{p}}=\frac{\mathrm{g}_{\mathrm{p}}-2}{2}=\mu_{\mathrm{p}}-1 \\
& >\text { At } q^{2}=0 \text {, } \\
& \text { proton: } \mathrm{F}_{1}=\mathrm{F}_{2}=1 \quad \mathrm{G}_{\mathrm{E}}=1, \mathrm{G}_{\mathrm{M}}=\mu_{\mathrm{p}} \\
& \text { neutron: } \mathrm{F}_{1}=0, \mathrm{~F}_{2}=1, \mathrm{G}_{\mathrm{E}}=1, \mathrm{G}_{\mathrm{M}}=\mu_{\mathrm{n}}
\end{aligned}
$$

$\square \mathrm{G}_{\mathrm{E}}$ and G_{M} can be interpreted as Fourier transforms of spatial distributions of charge and magnetization of nucleon in the Breit frame

$$
\text { i.e } \rho(\vec{r})=\int \frac{d^{3} q}{2 \pi^{3}} e^{-i \vec{q} \cdot \vec{r}} \frac{M}{E(\vec{q})} G_{E}\left(\vec{q}^{2}\right)
$$

Baryon form factor

\Rightarrow The Born cross section for $e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow B \bar{B}$, can be expressed in terms of electromagnetic form factor G_{E} and G_{M} :
> The Coulomb factor $\mathrm{C}=\left\{\begin{array}{cc}\frac{\pi \alpha}{\beta} \frac{1}{1-\exp \left(-\frac{\pi \alpha}{\beta}\right)} & \text { for a charged } B \bar{B} \text { pair } \\ 1 & \text { for a neutral } B \bar{B} \text { pair }\end{array}\right.$

$$
\sigma_{B \bar{B}}(q)=\frac{4 \pi \alpha^{2} c \beta}{3 q^{2}}\left[\left|G_{M}(q)\right|^{2}+\frac{1}{2 \tau}\left|G_{E}(q)\right|^{2}\right]
$$

	Energy Scan	Initial State Radiation
$\mathrm{E}_{\text {beam }}$	discrete	fixed
\mathcal{L}	low at each beam energy	high at one beam energy
σ	$\begin{aligned} \frac{d \sigma_{p \bar{亏}}}{d(\cos \theta)} & =\frac{\pi \alpha^{2} \beta C}{2 q^{2}}\left[\left\|G_{M}\right\|^{2}\left(1+\cos ^{2} \theta\right)\right. \\ & \left.+\frac{4 m_{\rho}^{2}}{q^{2}}\left\|G_{E}\right\|^{2} \sin ^{2} \theta\right] \end{aligned}$	$\begin{gathered} \frac{d^{2} \sigma_{p \bar{p} \gamma}}{d q^{2} d \theta_{\gamma}}=\frac{1}{s} W\left(s, x, \theta_{\gamma}\right) \sigma_{p \bar{p}}\left(q^{2}\right) \\ W\left(s, x, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right) \end{gathered}$
q^{2}	single at each beam energy	from threshold to s

Both techniques, energy scan and initial state radiation. can be used at BESIII

$$
\sim \frac{1}{400}
$$

$e^{+} e^{-} \rightarrow p \bar{p}$

Phys.Rev.D 91, 112004(2015)
■Using 12 c.m. energies from 2.2324 to 3.671 GeV , total luminosity $156.9 \mathrm{pb}^{-1}$
■ Cross section
$>\sigma_{\text {Born }}=\frac{\mathrm{N}_{\mathrm{obs}}-\mathrm{N}_{\mathrm{bkg}}}{\mathrm{L} \cdot \varepsilon \cdot(1+\delta)}$
■ Effective FF
$>\sigma=\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\left(\left|\mathrm{G}_{M}\right|^{2}+\frac{1}{2 \tau}\left|\mathrm{G}_{\mathrm{E}}\right|^{2}\right)$
$>\mathrm{G}_{\text {eff }}=\sqrt{\frac{3 \mathrm{q}^{2}}{4 \pi \alpha^{2} \beta C} \cdot \frac{\sigma}{1+1 / 2 \tau}}$

\square Ratio extraction

$>$ Fit function:
$>\frac{\mathrm{dN}}{\mathrm{d} \cos \theta_{\mathrm{p}}}=\mathrm{N}_{\mathrm{norm}}\left[\left(1+\cos ^{2} \theta_{\mathrm{p}}\right)+\mathrm{R}_{\mathrm{em}}^{2} \frac{1}{\tau} \sin ^{2} \theta_{\mathrm{p}}\right]$

	$\delta \mathrm{R}_{\mathrm{em}} / \mathrm{R}_{\mathrm{em}}$	$\delta \mathrm{G}_{\text {eff }} / \mathrm{G}_{\text {eff }}$
Stat. with Sys.	$\mathbf{2 5 \%}-\mathbf{5 0 \%}$	$\mathbf{3 \%}-\mathbf{3 7 \%}$

$e^{+} e^{-} \rightarrow \gamma_{I S R} p \bar{p}$

■Combination of 7 data sets $(\geq 3.773 \mathrm{GeV})$, total luminosity $7.4 \mathrm{fb}^{-1}$.
\square Event selection:
$>$ Two charged tracks from vertex
$>$ One high energy shower in EMC (ISR-tagged)
$>$ Kinematic constraints applied
$>$ Background subtraction from weighted MC
-Cross section

$$
>\sigma_{p \bar{p}}^{B o r n}\left(M_{p \bar{p}}\right)=\frac{\left(d N / d M_{p \bar{p}}\right)_{c o r r}}{d L / d M_{p \bar{p}}}
$$

- Ratio extraction

$$
\begin{aligned}
& >\frac{d \sigma}{d \cos \theta}=A\left[H_{M}\left(\cos \theta, q^{2}\right)+\frac{R_{e m}^{2}}{\langle\tau\rangle} H_{E}\left(\cos \theta, q^{2}\right)\right] \\
& >H_{M}\left(\cos \theta, q^{2}\right)\left(G_{E}=0\right) \text { and } H_{E}\left(\cos \theta, q^{2}\right)\left(G_{M}=\right. \\
& >\frac{d \sigma}{d \cos \theta}=A\left[H_{M}\left(\cos \theta, q^{2}\right)+\frac{R_{e m}^{2}}{\langle\tau\rangle} H_{E}\left(\cos \theta, q^{2}\right)\right]
\end{aligned}
$$

$e^{+} e^{-} \rightarrow \gamma_{I S R} p \bar{p}$

■ Background subtraction and efficiency dividing
■ The proton FFs extracted between threshold to 3.0 GeV

	$\delta R_{\text {em }} / R_{\text {em }}$	$\delta G_{\text {eff }} / G_{\text {eff }}$
Stat.	$18.5-33.6 \%$	$4.1-31.6 \%$
Syst.	$4.2-15.6 \%$	$1.6-12 \%$

$$
\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \Lambda \bar{\Lambda}
$$

■ Using 4 c.m. energies from 2.2324 to 3.08 GeV , total luminosity 40.5 pb^{-1}
$■ \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda \bar{\Lambda}$ at the first energy point, 2.2324 GeV , which is 1.0 MeV above the $\Lambda \bar{\Lambda}$ mass threshold, is reconstructed final final states of $\mathrm{p} \overline{\mathrm{p}} \pi^{+} \pi^{-}$ and $\overline{\mathrm{n}} \pi^{0}+\mathrm{X}$. The Born cross section is measured to be $305 \pm 45_{-36}^{+66} \mathrm{pb}$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \Lambda_{c}^{+} \overline{\bar{c}}_{-}$

 4.590 and 4.600 GeV , total luminosity \quad ○ 300 Belle data $631.3 \mathrm{pb}^{-1}$
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Lambda_{\mathrm{c}}^{+} \bar{\Lambda}_{\mathrm{c}}^{-}$is reconstructed by tagging 10 decay modes of Λ_{c}^{+}

1

Hadron spectroscopy

Cross section of $e^{+} e^{-} \rightarrow K^{+} K^{-}$inBaBar
$>$ Possible resonance near $2.2 \mathrm{GeV}: \rho(2150), \varphi(2170) / \mathrm{Y}(2175), \ldots$

$\mathbf{Y}(\mathbf{2 1 7 5})$	$\mathbf{A s} \mathbf{2}{ }^{\mathbf{3}} \mathbf{D}_{\mathbf{1}} \mathbf{s} \mathbf{s}$ quarkonium		As $\mathbf{s} \overline{\mathbf{s} g}$ hybrid	As $\mathbf{3}{ }^{3} \mathbf{S}_{\mathbf{1}}$ $\mathbf{s} \bar{s}$ quarkonium
	Γ_{LJ} in ${ }^{3} \mathrm{P}_{0}$ model	Γ_{LJ} in Flux Tube Model	in Flux Tube Model	in ${ }^{3} \mathrm{P}_{0}$ model
$\Gamma_{\mathrm{KK}}(\mathrm{MeV})$	9.8	23.1	0	0
$\Gamma_{\text {tot }}(\mathrm{MeV})$	167.21	211.9	148.7	378

$>$ Form factor of kaon
$>$ Charge distribution: $F\left(q^{2}\right)=\int d^{3} r \rho(r) e^{i q \cdot r}$
$>$ Check pQCD predictions: $F_{K}=16 \pi \alpha_{s}(s) f_{K}^{2} / s^{\prime}$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{K}^{+} \boldsymbol{K}^{-}$

\square R scan data from 2.0 to 3.08 GeV , total luminosity $\sim 651 \mathrm{pb}^{-1}$
\square A structure near 2.2 GeV is measured by:

$$
\sigma=\left|A_{K}\right|^{2},
$$

$$
A_{K}=\sum_{r} c_{r} \cdot B W_{r}+c_{c o n} \cdot s^{-\alpha} \cdot e^{i \theta}
$$

$r: \rho, \omega, \varphi$ and their excited states
\square Form factor extraction:

$\sigma_{K K}(s)$: dressed cross section; $\sigma_{K K}^{0}(s)$: bare cross section
$C_{F S}$: final-state correction

- Form factor fitting function:

$$
\begin{aligned}
& \left|F_{K}\right|^{2}=A \alpha_{s}^{2}(s) / s^{n} \\
& n=1.94 \pm 0.09 \\
& \text { (agreement with pQCD prediction } n=2 \text {) }
\end{aligned}
$$

Precision tests of the Standard Model

\square The anomalous magnetic moment $\alpha_{\mu}=\frac{g_{\mu}-2}{2}$
$>$ Experimental measurement: $\alpha_{\mu}^{\text {exp }}=(11659208.9+6.3) \cdot 10_{\text {PRD 73, 072(2006) }}^{-10}$
$>$ Theoretical prediction: $\alpha_{\mu}^{S M}=(11659580.2+4.9) \cdot 10^{-10}$ Eur. Phys. J. C71, 1515(2011)
=>discrepancy: 3.6 standard deviations
$\alpha_{\mu}^{\mathrm{SM}}=\alpha_{\mu}^{\mathrm{QED}}+\alpha_{\mu}^{\mathrm{weak}}+\underset{\downarrow}{\alpha_{\mu}^{\mathrm{hadr}}}$
can not be calculated by means of perturbative calculations

Hadronic vacuum polarization
$\alpha_{\mu}^{h a d r, V P}=(692.2 \pm 4.2) \cdot 10^{-10}$
Hadronic light-by-light scattering
$\alpha_{\mu}^{\text {hadr,LBL }}=(10.5 \pm 2.6) \cdot 10^{-10}$

Precision tests of the Standard Model

■Hadronic vacuum polarization

$$
>\alpha_{\mu}^{\text {had, } L O}=\frac{\alpha^{2}(0)}{3 \pi^{2}} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{K(s)}{s} R(s) \quad R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

■ Contributions of hadronic cross sections to the hadronic content $\alpha_{\mu}^{\text {hadr }}$

-The largest contribution is below $1 \mathrm{GeV}\left(\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{+} \pi^{-}\right)$
$\square e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contribution > 6%

$$
e^{+} e^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi_{\mathrm{ph}}^{-}
$$

■ Data: $2.9 \mathrm{fb}^{-1} @ 3.773 \mathrm{GeV}$
\square Detected ISR photon - MC produced with Phokhara \square Main background: $\mu^{+} \mu^{-} \gamma$

$>$ TMVA method (Neutral Network)
■Systematic uncertainty: 0.9\%

$$
e^{+} e^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi_{\text {en }}^{-}
$$

■Cross section: $\sigma_{\pi \pi\left(\gamma_{\mathrm{FSR}}\right)}^{\text {bare }}=\frac{\mathrm{N}_{\pi \pi \gamma} \cdot\left(1+\delta_{\mathrm{FSR}}\right)}{\mathrm{L} \cdot \epsilon_{\mathrm{global}}^{\pi \pi \gamma} \cdot \mathrm{H}(\mathrm{s}) \cdot \delta_{\mathrm{vac}}}$
■Form factor: $\left|\mathrm{F}_{\pi}\right|^{2}=\frac{3 \mathrm{~s}}{\pi \alpha^{2} \beta^{3}} \sigma_{\pi \pi}^{\text {dressed }}$
Contribution to the hadronic contribution of α_{μ}
$>\alpha_{\mu}^{\pi \pi, \mathrm{LO}}(0.6-0.9 \mathrm{GeV})=\frac{1}{4 \pi^{3}} \int_{0.6}^{0.9} \mathrm{dsK}(\mathrm{s}) \sigma_{\pi \pi}^{\text {bare }}$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \gamma_{I S R} \pi^{+} \pi^{-} \pi^{0}$

■ Data: $2.9 \mathrm{fb}^{-1} @ 3.773 \mathrm{GeV}$
\square ISR tagged:
$>$ Clear ω and φ signals
$>$ Huge background in high mass
$■$ ISR untagged
$>$ Limited by acceptance
$>$ Negligible background

\square Below 1.8 GeV , fit with VMD model
$>\sigma(m)=\frac{12 \pi}{m^{3}} F_{\rho \pi}(m)\left|\sum_{V=\omega, \varphi, \omega^{\prime} \omega^{\prime \prime}} \frac{\Gamma_{V} m_{V}^{3 / 2} \sqrt{B\left(V \rightarrow e^{+} e^{-}\right) B(V \rightarrow 3 \pi)}}{D_{V}(m)} \frac{e^{i \varphi V}}{\sqrt{F_{\rho \pi}\left(m_{V}\right)}}\right|^{2}$
$>$ Branching fraction for $\omega, \varphi, \omega^{\prime} \omega^{\prime \prime}$ consistent with PDG

Lineshape of J/ Ψ resonance

(a) $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \rightarrow$ hadrons via strong mechanism;
(b) $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi \rightarrow$ hadrons via EM mechanism;
(c) non-resonant $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons via a virtual photon.
$\sigma_{\text {Born }}=\left|A_{3 g}+A_{\gamma}+A_{\text {cont }}\right|^{2}$

[2] M. Suzuki et al. Phys. Rev. D63, 054021 (2001).
[3] M. Ablikim et al. (BESIII), Phys. Rev. D86, 032014 (2012).
[4] K. Zhu et al., Int. J Mod. Phys. A30, 1550148 (2015).
\square Model dependent experimental evidences:
$>$ SU3 and SU3 breaking in $1^{-} 0^{-[1]}, 0^{-} 0^{-[1]}$, $1^{-} 1^{-[1]}, 1^{+} 0^{-[2]}$ decay show the phase between $A_{3 g}$ and $A_{E M}$ is $\Phi_{3 \mathrm{~g}, \mathrm{EM}} \sim 90^{\circ}$
$>$ If $\mathrm{A}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{n} \overline{\mathrm{n}}\right) \sim-\mathrm{A}\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{p} \overline{\mathrm{p}}\right)$, $\frac{\mathrm{B}(\mathrm{n} \overline{\mathrm{n}})}{\mathrm{B}(\mathrm{p})}=0.98 \pm 0.08 \rightarrow \Phi_{3 \mathrm{~g}, \mathrm{EM}} \sim 89^{\circ} \pm 8^{\circ}[3]$
$>$ Other baryon pairs:

$$
\Phi_{3 \mathrm{~g}, \mathrm{EM}} \sim-85.9^{\circ} \pm 1.7^{\circ} \text { or } 90.8^{\circ} \pm 1.6^{\circ}[4]
$$

$>$ The phase angle between $A_{E M}$ and $A_{\text {cont }}$: $\Phi_{\gamma, \text { cont. }}=0^{\circ}$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$
$>$ The interference between φ and ω was observed at SND, $\Phi_{3 \mathrm{~g}, \mathrm{EM}} \sim 180^{\circ}$

$\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

■ Data at 16 energy points around J / ψ peak, integrated luminosity $\sim 100.5 \mathrm{pb}^{-1}$
\square Observed cross section: $\sigma_{\mathrm{i}}=\frac{\mathrm{N}_{\mathrm{i}}}{\epsilon_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}(B)}$
\square Theoretically prediction of Born cross section: $\sigma^{0}(W)=\frac{4 \pi \alpha^{2}}{W^{2}}\left|1+\frac{3 W^{2} \sqrt{\Gamma_{e e} \Gamma_{\mu \mu}}{ }^{\mathrm{i}} \mathrm{i}, \text { cont }}{\alpha M\left(W^{2}-M^{2}+\text { iMr) }\right.}\right|^{2}$
\square Considering ISR : $\sigma^{\prime}(W)=\int_{0}^{1-\left(\frac{W_{m}}{W}\right)^{2}} \mathrm{dxF}(\mathrm{x}, \mathrm{W}) \sigma^{0}(\mathrm{~W})$
\square Considering energy spread $\mathrm{S}_{\mathrm{E}}: \sigma^{\prime \prime}(W)=\int_{\mathrm{W}-\mathrm{n} \mathrm{n}_{\mathrm{E}}}^{\mathrm{W}+\mathrm{n}_{\mathrm{E}}} \frac{1}{\sqrt{2 \pi S_{\mathrm{E}}}} \exp \left(\frac{\mathrm{W}^{\prime}-\mathrm{W}}{2 S_{\mathrm{E}}^{2}}\right) \sigma^{\prime}\left(\mathrm{W}^{\prime}\right) \mathrm{dW}^{\prime}$
■ Minimization method: $\chi^{2}=\sum_{i=1}^{16} \frac{\left[\sigma^{o b s}\left(W_{i}\right)-\sigma^{\prime \prime}\left(W_{i}\right)\right]^{2}}{\left(\Delta \sigma^{\mathrm{obs}} W_{i}\right)^{2}+\left[\Delta W_{i} \frac{. \sigma^{\prime \prime}}{d W^{\prime \prime}}\left(W_{i}\right)\right]^{2}}$
$\Phi_{\gamma, \text { cont. }}=(-5 \pm 9.7)^{\circ}$, consistent with zero Energy spread: $\mathrm{S}_{\mathrm{E}}=(0.911 \pm 0.026) \mathrm{MeV}$ Energy shift: $\Delta \mathrm{M}=(0.548 \pm 0.041) \mathrm{MeV}$

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$

\square For $\pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}$ process: $\sigma^{0}(\mathrm{~W})=\left(\frac{\mathrm{A}}{\mathrm{W}^{2}}\right)^{2} \frac{4 \pi \alpha^{2}}{\mathrm{~W}^{2}}\left|1+\frac{3 \mathrm{~W}^{2} \sqrt{\Gamma_{\mathrm{e}} \Gamma_{\mu \mu}}\left(1+\mathrm{Ce}^{\mathrm{i} \Phi 3 \mathrm{~g}, \mathrm{EM}}\right)}{\alpha \mathrm{M}\left(\mathrm{W}^{2}-\mathrm{M}^{2}+\mathrm{iMC}\right)}\right|^{2}$
$>\Phi_{3 \mathrm{~g}, \mathrm{EM}}=83.4^{\circ} \pm 4.3^{\circ}$ or $-83.5^{\circ} \pm 4.2^{\circ}$
$>\Gamma_{5 \pi}=\left(\frac{\mathrm{A}}{\mathrm{w}^{2}}\right)^{2} \Gamma_{\mu \mu}\left|1+\mathrm{Ce}^{\mathrm{i} \Phi 3 \mathrm{~g}, \mathrm{EM}}\right|^{2}$
$>\operatorname{Br}\left(\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \pi^{0}\right)=\frac{\Gamma_{5 \pi}}{\Gamma}=(4.27 \pm 0.52) \%$, consistent with PDG value
\square For $\eta \pi^{+} \pi^{-}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)$ process, the formula is similar with that for $\mu^{+} \mu^{-}$
$>$ No $A_{3 g}$ due to G violation
$>\Phi_{\gamma, \text { cont. }}=(-2 \pm 39)^{\circ}$, consistent with zero
$>\operatorname{Br}\left(\mathrm{J} / \Psi \rightarrow \eta \pi^{+} \pi^{-}\right)=\frac{\Gamma_{\eta \pi^{+} \pi^{-}}}{\Gamma}=(\mathbf{3 . 6} \pm \mathbf{0 . 7}) \times \mathbf{1 0}^{-4}$, much improved than PDG value.

J/ Ψ decay width

- ISR method

■ $2.93 \mathrm{fb}^{-1}$ data at 3.773 GeV
■ Channel: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma_{\text {ISR }} \mu^{+} \mu^{-}$
■ Generator: Phokhara
$\square \sigma_{\mathrm{J} / \Psi \gamma}(\mathrm{s})=\frac{\mathrm{N}_{\mathrm{I} / \Psi}}{\epsilon \cdot \mathrm{L}}=\Gamma_{\mathrm{ee}} \cdot \mathrm{B}_{\mu \mu} \cdot \mathrm{I}(\mathrm{s})$

$$
\begin{gathered}
I(s)=\int_{m_{\min }}^{m_{\max }} \frac{2 m_{2 \mu}}{s} W\left(s, m_{2 \mu}\right) \frac{B W^{\prime}\left(m_{2 \mu}\right)}{B_{\mu \mu} \Gamma_{e e}} d m_{2 \mu} \\
B W\left(m_{2 \mu}\right)=\frac{12 \pi B_{\mu \mu} \Gamma_{e e} \Gamma_{t o t}}{\left(m_{2 \mu}^{2}-m_{J / \psi}^{2}\right)^{2}+m_{J / \psi}^{2} \Gamma_{t o t}^{2}}
\end{gathered}
$$

- Fit tunction:

$\mathrm{f}(\mathrm{x})=\mathrm{N}_{\mathrm{J} / \psi}[\mathrm{M}(\mathrm{x}) \otimes \mathrm{G}(\mathrm{x})]+\left(\mathrm{N}_{\text {total }}-\mathrm{N}_{\mathrm{J} / \psi}\right) \mathrm{p}(\mathrm{x})$

$\square \Gamma_{\mathrm{ee}} \cdot \mathrm{B}_{\mu \mu}=(333.4 \pm 2.5 \pm 4.4) \mathrm{eV}$

■ Energy Scan method

- Data at 15 energy points around J / ψ peak, integrated luminosity $\sim 83 \mathrm{pb}^{-1}$
\square Channels: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$
$\square \sigma_{\mathrm{ll}}^{\text {the }}=\sigma_{\|}^{\text {the }}\left(\mathrm{W}_{0}, \mathrm{M}, \Gamma_{\text {tot }}, \Gamma_{\mathrm{e}} \Gamma_{\mathrm{ll}} /\right.$
$\left.\Gamma_{\text {tot }}, \sqrt{\Gamma_{\mathrm{ee}} \Gamma_{\mathrm{ll}}}, \sigma_{\mathrm{W}}\right)$ with ll $=$ ee or $\mu \mu$

Collaboration	Year	$\Gamma_{\text {tot }}(\mathrm{keV})$	$\Gamma_{l l}(\mathrm{keV})$
BABAR	2004	94.7 ± 4.4	5.61 ± 0.21
CLEO	2006	96.1 ± 3.2	5.71 ± 0.16
KEDR	2010	94.1 ± 2.7	5.59 ± 0.12
PDG	2014	92.9 ± 2.8	5.55 ± 0.14
BESIII(ISR)	2016	-	5.58 ± 0.09
This Work	2016	94.4 ± 1.9	5.64 ± 0.10

Summary

\square Fruitful results from $e^{+} e^{-}$annihilation at BESIII, both energy scan and ISR methods are performed.
\square More precise baryon form factor on proton, Λ and Λ_{c}, threshold effect observed near the mass threshold of baryon pair.
\square A vector structure observed in $\mathrm{K}^{+} \mathrm{K}^{-}$spectrum, with $\mathrm{m}=2.2298 \pm 0.0053 \pm 0.0172 \mathrm{GeV}$ and $\Gamma=143.7 \pm 12.0 \pm 7.8$ MeV.
\square Progress been made in vacuum polarization calculation from $\gamma_{\text {ISR }} \pi^{+} \pi^{-}$and $\gamma_{\text {ISR }} \pi^{+} \pi^{-} \pi^{0}$ processes.
\square First measurement for the phase between J/ Ψ strong and EM amplitude concern multi-hadron final state.
\square ISR and ES methods performed to extract $\Gamma_{\text {ll }}$ and $\Gamma_{\text {tot }}$ on J/ ψ and achieved the best accuracy.

Thank you! Obrigado!谢谢!

