One-loop exclusive diffractive processes in the CGC framework

Renaud Boussarie

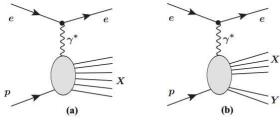
Institute of Nuclear Physics PAN

Excited QCD 2017

RB, A.V.Grabovsky, L.Szymanowski, S.Wallon JHEP 409 (2014) 026 and JHEP 1611 (2016) 149 RB, A.V.Grabovsky, D.Yu.Ivanov, L.Szymanowski, S.Wallon arXiv:1612.08026 [hep-ph]

Rapidity gap events at HERA

Experiments at HERA : about 10% of scattering events reveal a rapidity gap



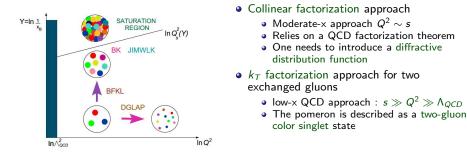
DIS events

DDIS events

Rapidity gap \equiv Pomeron exchange

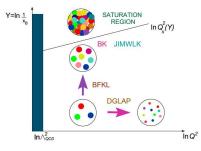
DIS : Deep Inelastic Scattering, DDIS : Diffractive DIS

Theoretical approaches for DDIS using perturbative QCD

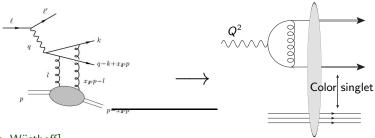


A recent analysis of diffractive dijet production in DIS at HERA seems to favor k_t factorization in the small diffractive mass regime [ZEUS collaboration, 2015]

Diffractive DIS



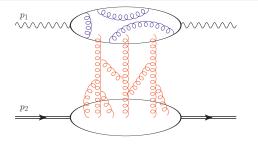
- Shockwave (CGC) approach
 - low-x QCD approach : $s \gg Q^2 \gg \Lambda_{QCD}$
 - The pomeron exchange is described as the action of a color singlet Wilson line operator on the target states



[Bartels, Wüsthoff]

Diffractive DIS	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
	• 00 0000000	000000000000			00000000

Kinematics



$$p_{1} = p^{+}n_{1} - \frac{Q^{2}}{2s}n_{2}$$

$$p_{2} = \frac{m_{t}^{2}}{2p_{2}^{-}}n_{1} + p_{2}^{-}n_{2}$$

$$p^{+} \sim p_{2}^{-} \sim \sqrt{\frac{s}{2}}$$

$$(p_{1} + p_{2})^{2} = s \gg Q_{H}^{2} \gg \Lambda_{QCL}^{2}$$

Lightcone (Sudakov) vectors

$$n_1 = \sqrt{rac{1}{2}}(1, 0_{\perp}, 1), \quad n_2 = \sqrt{rac{1}{2}}(1, 0_{\perp}, -1), \quad (n_1 \cdot n_2) = 1$$

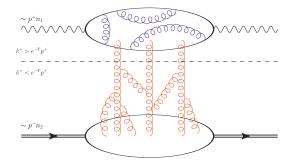
Lightcone coordinates:

$$x = (x^0, x^1, x^2, x^3) \to (x^+, x^-, \vec{x})$$
$$x^+ = x_- = (x \cdot n_2) \quad x^- = x_+ = (x \cdot n_1)$$

 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

 000
 000000000
 000000
 000000
 000000
 0000000

Rapidity separation



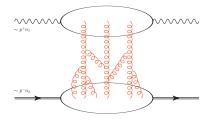
Let us split the gluonic field between "fast" and "slow" gluons

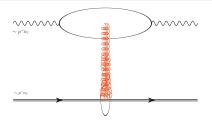
$$\begin{aligned} \mathcal{A}^{\mu a}(k^+,k^-,\vec{k}\,) &= & \mathcal{A}^{\mu a}_{\eta}(|k^+| < e^{\eta} p^+,k^-,\vec{k}\,) \\ &+ & b^{\mu a}_{\eta}(|k^+| > e^{\eta} p^+,k^-,\vec{k}\,) \end{aligned}$$

 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

 000
 0000000000
 0000000
 000000
 0000000
 0000000

Large longitudinal boost to the projectile frame





 $b^k(x^+, x^-, \vec{x})$ $\Lambda \sim \sqrt{\frac{s}{m_t^2}}$ $b^k(\Lambda x^+, \frac{x^-}{\Lambda}, \vec{x})$

$$b^{\mu}(x) \rightarrow b^{-}(x) n_{2}^{\mu} = \delta(x^{+}) \mathbf{B}(\vec{x}) n_{2}^{\mu} + (\sqrt{\frac{m_{t}^{2}}{s}})$$

QCD Lagrangian

Rewrite the QCD Lagrangian in terms of the "fast" internal field and the "slow" external field

$$\begin{split} \mathcal{L}_{free} &- gf_{abc} [(A^{b}_{\eta} \cdot \partial) A^{a}_{\eta}] A^{c}_{\eta} - \frac{1}{4} g^{2} f_{abc} f_{ade} (A^{a}_{\eta} \cdot A^{d}_{\eta}) (A^{b}_{\eta} \cdot A^{e}_{\eta}) \\ &+ i \bar{\psi} [-igt^{a} \hat{A}^{a}_{\eta}] \psi + i \bar{\psi} [-igt^{a} \hat{b}^{a}_{\eta}] \psi - gf_{abc} ((b^{b}_{\eta} \cdot \partial) A^{a}_{\eta}) \cdot A^{c}_{\eta} \\ &- gf_{abc} [((A^{b}_{\eta} \cdot \partial) A^{a}_{\eta}) \cdot b^{c}_{\eta} + ((b^{b}_{\eta} \cdot \partial) A^{a}_{\eta}) \cdot b^{c}_{\eta} \\ &+ ((A^{b}_{\eta} \cdot \partial) b^{a}_{\eta}) \cdot A^{c}_{\eta} + ((b^{b}_{\eta} \cdot \partial) b^{a}_{\eta}) \cdot A^{c}_{\eta}] \\ &- \frac{1}{4} g^{2} f_{abc} f_{ade} [(A^{a}_{\eta} \cdot A^{a}_{\eta}) ((b^{e}_{\eta} \cdot A^{b}_{\eta}) + (b^{b}_{\eta} \cdot A^{e}_{\eta})) \\ &+ (b^{d}_{\eta} \cdot A^{a}_{\eta}) ((A^{b}_{\eta} \cdot A^{e}_{\eta}) + (b^{e}_{\eta} \cdot A^{b}_{\eta}) + (b^{b}_{\eta} \cdot A^{e}_{\eta})) \\ &+ (b^{d}_{\eta} \cdot A^{d}_{\eta}) ((A^{b}_{\eta} \cdot A^{e}_{\eta}) + (b^{e}_{\eta} \cdot A^{b}_{\eta}) + (b^{b}_{\eta} \cdot A^{e}_{\eta}))] \end{split}$$

Gray terms cancel in lightcone gauge $(n_2 \cdot A) = 0$

 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

 000
 0000000000
 000000
 000000
 0000000
 0000000

Propagator through the external shockwave field

$$G(z_{2}, z_{0}) = -\int d^{4}z_{1}\theta(z_{2}^{+}) \,\delta(z_{1}^{+}) \,\theta(-z_{0}^{+}) \,G(z_{2}-z_{1}) \,\gamma^{+}G(z_{1}-z_{0}) \,U_{1}$$

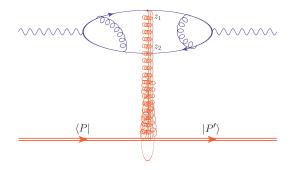
Wilson lines :

$$U_{i}^{\eta} = U_{\vec{z}_{i}}^{\eta} = P \exp\left[ig \int_{-\infty}^{+\infty} b_{\eta}^{-}(z_{i}^{+}, \vec{z}_{i}) dz_{i}^{+}
ight]$$

$$U_{i}^{\eta} = 1 + ig \int_{-\infty}^{+\infty} b_{\eta}^{-}(z_{i}^{+}, \vec{z}_{i}) dz_{i}^{+} + (ig)^{2} \int_{-\infty}^{+\infty} b_{\eta}^{-}(z_{i}^{+}, \vec{z}_{i}) b_{\eta}^{-}(z_{j}^{+}, \vec{z}_{j}) \theta(z_{ji}^{+}) dz_{i}^{+} dz_{j}^{+}$$

...

Factorized picture



Factorized amplitude

$$\mathcal{A}^{\eta} = \int d^{D-2} \vec{z}_1 d^{D-2} \vec{z}_2 \, \Phi^{\eta}(\vec{z}_1, \vec{z}_2) \, \langle \mathcal{P}' | [\operatorname{Tr}(\mathcal{U}^{\eta}_{\vec{z}_1} \mathcal{U}^{\eta\dagger}_{\vec{z}_2}) - \mathcal{N}_c] | \mathcal{P} \rangle$$

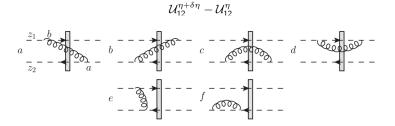
Dipole operator $\mathcal{U}_{ij}^{\eta} = \frac{1}{N_c} \text{Tr}(U_{\vec{z}_i}^{\eta} U_{\vec{z}_i}^{\eta\dagger}) - 1$

Written similarly for any number of Wilson lines in any color representation!

 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

 000
 0000000000
 000000
 000000
 000000
 0000000

Evolution for the dipole operator

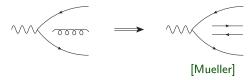


B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathcal{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \vec{z}_{12}^{2}} \left[\mathcal{U}_{13}^{\eta} + \mathcal{U}_{32}^{\eta} - \mathcal{U}_{12}^{\eta} + \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta} \right]$$
$$\frac{\partial \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta}}{\partial \eta} = \dots$$

Evolves a dipole into a double dipole

Mean field approximation, or 't Hooft planar limit $N_c \to \infty$ in Balitsky's equation replacements



⇒ BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \langle \mathcal{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \frac{\vec{z}_{12}^{2}}{\vec{z}_{13}^{2} \vec{z}_{23}^{2}} \left[\langle \mathcal{U}_{13}^{\eta} \rangle + \langle \mathcal{U}_{32}^{\eta} \rangle - \langle \mathcal{U}_{12}^{\eta} \rangle + \langle \mathcal{U}_{13}^{\eta} \rangle \left\langle \mathcal{U}_{32}^{\eta} \rangle \right]$$

$$\frac{\mathsf{BFKL}/\mathsf{BKP} \text{ part} \qquad \mathsf{Triple pomeron vertex}$$

Non-linear term : saturation

The JIMWLK Hamiltonian

Hamiltonian formulation of the hierarchy of equations

For an operator built from n Wilson lines, the JIMWLK evolution is given at LO accuracy by

$$\frac{\partial}{\partial \eta} \left[U_{\vec{z}_1}^{\eta} \dots U_{\vec{z}_n}^{\eta} \right] = \sum_{i,j=1}^n H_{ij} \cdot \left[U_{\vec{z}_1}^{\eta} \dots U_{\vec{z}_n}^{\eta} \right],$$

JIMWLK Hamiltonian

$$H_{ij} = \frac{\alpha_s}{2\pi^2} \int d\vec{z}_k \frac{\vec{z}_{ik} \cdot \vec{z}_{kj}}{\vec{z}_{ik}^2 \vec{z}_{kj}^2} [T_{i,L}^a T_{j,L}^a + T_{i,R}^a T_{j,R}^a - U_{\vec{z}_k}^{ab} (T_{i,L}^a T_{j,R}^b + T_{j,L}^a T_{i,R}^b)]$$

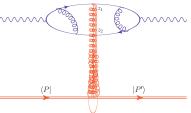
Known at NLO accuracy

Diffractive DIS The shockwave formalism First step: open parton production Dijet production Vector meson production Phenomenological applications 000 000000000 000000 000000 000000 0000000

Known NLO impact factors

Very few NLO CGC impact factors are known

- $\gamma^* \rightarrow \gamma^*$ [Balitsky, Chirilli; Beuf]?
- Single inclusive particle production [Chirilli, Xiao, Yuan]
- Exclusive diffractive electro- and photoproduction of a forward dijet [RB, Grabovsky, Szymanowski, Wallon]
- $\gamma_{L,T}^{(*)} \rightarrow V_L$ [RB, Grabovsky, Ivanov, Szymanowski, Wallon]



	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	000000000000	000000	000000	0000000

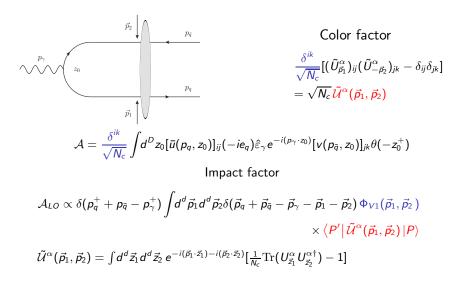
Assumptions

- Regge-Gribov limit : $s \gg Q^2 \gg \Lambda_{QCD}$
- Otherwise completely general kinematics
- Shockwave (CGC) Wilson line approach
- Transverse dimensional regularization $d = 2 + 2\varepsilon$, longitudinal cutoff

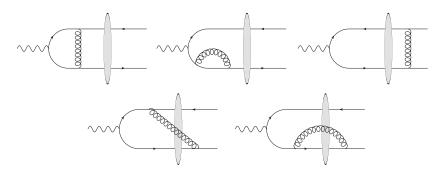
 $|\boldsymbol{p}_{g}^{+}| > \alpha \boldsymbol{p}_{\gamma}^{+}$

	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	00000000000	000000	000000	0000000

LO diagram

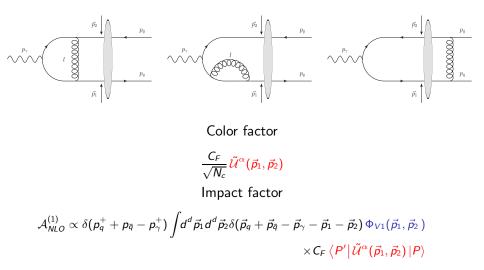


NLO open $q\bar{q}$ production



Diagrams contributing to the NLO correction

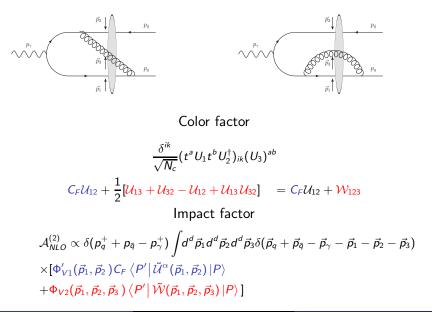
First kind of virtual corrections



 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

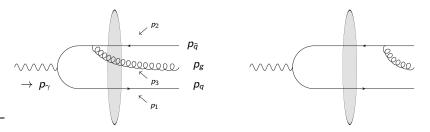
 000
 000000000
 000000
 000000
 000000
 0000000

Second kind of virtual corrections



	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	00000000000	000000	000000	0000000

LO open $q\bar{q}g$ production



 $\begin{aligned} \mathcal{A}_{R}^{(2)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}d^{d}\vec{p}_{3}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} - \vec{p}_{3}) \\ &\times [\Phi_{R1}^{\prime}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \langle P^{\prime} | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) | P \rangle \\ &+ \Phi_{R2}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) \langle P^{\prime} | \tilde{\mathcal{W}}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) | P \rangle] \end{aligned}$

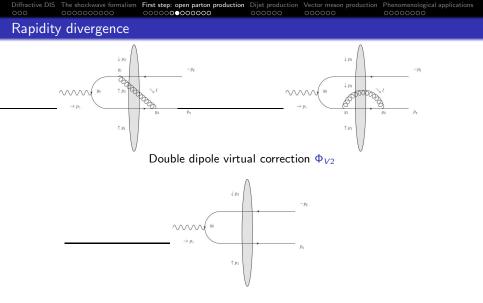
$$\begin{split} \mathcal{A}_{R}^{(1)} &\propto \delta(\boldsymbol{p}_{q}^{+} + \boldsymbol{p}_{\bar{q}} + \boldsymbol{p}_{g}^{+} - \boldsymbol{p}_{\gamma}^{+}) \int \! d^{d} \vec{p}_{1} d^{d} \vec{p}_{2} \delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2}) \\ &\times \Phi_{R1}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \left\langle P' \right| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) \left| P \right\rangle \end{split}$$

Diffractive DIS 000	The shockwave formalism	First step: open parton production $000000000000000000000000000000000000$	Dijet production	Vector meson production 000000	Phenomenological applications
Diverge	nces				

Divergences

- Rapidity divergence $p_g^+ \rightarrow 0$ $\Phi_{V2} \Phi_0^* + \Phi_0 \Phi_{V2}^*$
- UV divergence $\vec{p}_g^2 \rightarrow +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$

• Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$



B-JIMWLK evolution of the LO term : $\Phi_0 \otimes \mathcal{K}_{BK}$

Rapidity divergence

B-JIMWLK equation

$$\begin{split} \frac{\partial \tilde{\mathcal{U}}_{12}^{\alpha}}{\partial \log \alpha} &= 2\alpha_{s} N_{c} \mu^{2-d} \int \frac{d^{d} \vec{k}_{1} d^{d} \vec{k}_{2} d^{d} \vec{k}_{3}}{(2\pi)^{2d}} \delta(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} - \vec{p}_{1} - \vec{p}_{2}) \Big(\tilde{\mathcal{U}}_{13}^{\alpha} \tilde{\mathcal{U}}_{32}^{\alpha} + \tilde{\mathcal{U}}_{13}^{\alpha} + \tilde{\mathcal{U}}_{32}^{\alpha} - \tilde{\mathcal{U}}_{12}^{\alpha} \Big) \\ \times \left[2 \frac{(\vec{k}_{1} - \vec{p}_{1}) \cdot (\vec{k}_{2} - \vec{p}_{2})}{(\vec{k}_{1} - \vec{p}_{1})^{2} (\vec{k}_{2} - \vec{p}_{2})^{2}} + \frac{\pi^{\frac{d}{2}} \Gamma(1 - \frac{d}{2}) \Gamma^{2}(\frac{d}{2})}{\Gamma(d - 1)} \left(\frac{\delta(\vec{k}_{2} - \vec{p}_{2})}{\left[(\vec{k}_{1} - \vec{p}_{1})^{2} \right]^{1 - \frac{d}{2}}} + \frac{\delta(\vec{k}_{1} - \vec{p}_{1})}{\left[(\vec{k}_{2} - \vec{p}_{2})^{2} \right]^{1 - \frac{d}{2}}} \right) \right] \end{split}$$

 η rapidity divide, which separates the upper and the lower impact factors

$$ilde{\mathcal{U}}_{12}^{lpha} \Phi_0 o \Phi_0 ilde{\mathcal{U}}_{12}^{\eta} + 2 \log\left(rac{e^{\eta}}{lpha}\right) \mathcal{K}_{BK} \Phi_0 ilde{\mathcal{W}}_{123}$$

	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	000000000000	000000	000000	0000000

Rapidity divergence

Virtual contribution

$$(\Phi_{V2}^{\mu})_{div} \propto \Phi_0^{\mu} \left\{ 4 \ln \left(\frac{x \bar{x}}{\alpha^2} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

BK contribution

$$(\Phi^{\mu}_{BK})_{div} \propto \Phi^{\mu}_0 \left\{ 4 \ln \left(rac{lpha^2}{e^{2\eta}}
ight) \left[rac{1}{arepsilon} + \ln \left(rac{ec{m{p}_3}^2}{\mu^2}
ight)
ight]
ight\}$$

Sum : the α dependence cancels

$$(\Phi_{V2}^{\prime\mu})_{div} \propto \Phi_0^{\mu} \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2\eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

Rapidity divergence

Cancellation of the remaining $1/\epsilon$ divergence

Convolution

$$\begin{aligned} \left(\Phi_{V2}^{\prime \mu} \otimes \mathcal{W} \right) &= 2 \int d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2 \eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p}_3^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\} \\ &\times \delta(\vec{p}_{q1} + \vec{p}_{\bar{q}2} - \vec{p}_3) \left[\tilde{\mathcal{U}}_{13} + \tilde{\mathcal{U}}_{32} - \tilde{\mathcal{U}}_{12} - \tilde{\mathcal{U}}_{13} \tilde{\mathcal{U}}_{32} \right] \Phi_0^{\mu}(\vec{p}_1, \vec{p}_2) \end{aligned}$$

Rq :

- $\Phi_0(\vec{p_1}, \vec{p_2})$ only depends on one of the *t*-channel momenta.
- The double-dipole operators cancels when $\vec{z_3} = \vec{z_1}$ or $\vec{z_3} = \vec{z_2}$.

This permits one to show that the convolution cancels the remaining $\frac{1}{\varepsilon}$ divergence.

Then
$$\tilde{\mathcal{U}}_{12}^{\alpha} \Phi_0 + \Phi_{V2}$$
 is finite

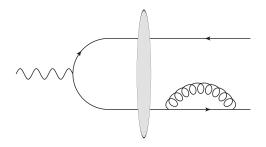
	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	000000000000	000000	000000	0000000

Divergences

- Rapidity divergence
- UV divergence $\vec{p}_g^2 \to +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

	The shockwave formalism	First step: open parton production	Dijet production	Phenomenological applications
UV dive				

Tadpole diagrams



Some null diagrams just contribute to turning UV divergences into IR divergences

$$\Phi \propto \int \frac{d^D k}{(k^2 + i0)^2} \propto \left(\frac{1}{2\epsilon_{IR}} - \frac{1}{2\epsilon_{UV}}\right)$$

	he shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000 0	000000000	00000000000	000000	000000	0000000

Divergences

- Rapidity divergence
- UV divergence
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Constructing a finite cross section

Exclusive diffractive production of a forward dijet

From partons to jets

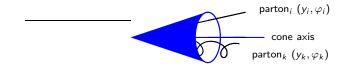
Soft and collinear divergence

Jet cone algorithm

We define a cone width for each pair of particles with momenta p_i and p_k , rapidity difference ΔY_{ik} and relative azimuthal angle $\Delta \varphi_{ik}$

$$\left(\Delta Y_{ik}\right)^2 + \left(\Delta \varphi_{ik}\right)^2 = R_{ik}^2$$

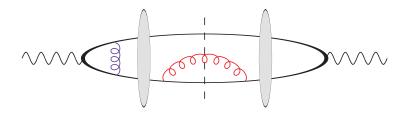
If $R_{ik}^2 < R^2$, then the two particles together define a single jet of momentum $p_i + p_k$.



Applying this in the small R^2 limit cancels our soft and collinear divergence.

	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	000000000000	00000	000000	0000000

Remaining divergence



• Soft divergence $p_g \rightarrow 0$

$$\Phi_{V1}\Phi_{0}^{*} + \Phi_{0}\Phi_{V1}^{*}, \Phi_{R1}\Phi_{R1}^{*}$$

• Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$

$$\Phi_{V1}\Phi_0^* + \Phi_0\Phi_{V1}^* + \Phi_{R1}\Phi_{R1}^*$$

	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	000000000000	000000	000000	0000000

Remaining divergence

Soft real emission

$$\left(\Phi_{R1}\Phi_{R1}^*
ight)_{soft}\propto \left(\Phi_0\Phi_0^*
ight)\int_{ ext{outside the cones}}\left|rac{p_q^\mu}{(p_q.p_g)}-rac{p_{ar{q}}^\mu}{(p_{ar{q}}.p_g)}
ight|^2rac{dp_g^+}{p_g^+}rac{d^dp_g}{(2\pi)^d}$$

Collinear real emission

$$\left(\Phi_{\textit{R1}}\Phi_{\textit{R1}}^{*}
ight)_{\textit{col}}\propto\left(\Phi_{0}\Phi_{0}^{*}
ight)\left(\mathcal{N}_{\textit{q}}+\mathcal{N}_{\bar{\textit{q}}}
ight)$$

Where $\ensuremath{\mathcal{N}}$ is the number of jets in the quark or the antiquark

$$\mathcal{N}_{k} = \frac{(4\pi)^{\frac{d}{2}}}{\Gamma(2-\frac{d}{2})} \int_{\alpha p_{\gamma}^{+}}^{p_{jet}^{+}} \frac{dp_{g}^{+}dp_{k}^{+}}{2p_{g}^{+}2p_{k}^{+}} \int_{\mathrm{in \ cone \ k}} \frac{d^{d}\vec{p}_{g}d^{d}\vec{p}_{k}}{(2\pi)^{d} \mu^{d-2}} \frac{\mathrm{Tr}\left(\hat{p}_{k}\gamma^{\mu}\hat{p}_{jet}\gamma^{\nu}\right)d_{\mu\nu}(p_{g})}{2p_{jet}^{+}\left(p_{k}^{-}+p_{g}^{-}-p_{jet}^{-}\right)^{2}}$$

Those two contributions cancel exactly the virtual divergences

Cancellation of divergences

Total divergence

$$(d\sigma_1)_{div} = \alpha_s \frac{\Gamma(1-\varepsilon)}{(4\pi)^{1+\varepsilon}} \left(\frac{N_c^2-1}{2N_c}\right) (S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}) d\sigma_0$$

Virtual contribution

$$S_{V} = \left[2\ln\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - 3\right] \left[\ln\left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\vec{p}_{j} - x_{j}\vec{p}_{j})^{2}}\right) - \frac{1}{\epsilon}\right] + 2i\pi\ln\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) + \ln^{2}\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - \frac{\pi^{2}}{3} + 6$$

Real contribution

$$\begin{split} S_{R} + \mathcal{N}_{jet1} + \mathcal{N}_{jet2} &= 2 \left[\ln \left(\frac{(x_{j}\bar{p}_{j}^{-} - x_{j}\bar{p}_{j}^{-1})}{x_{j}^{2}x_{j}^{2}R^{4}\bar{p}_{j}^{-2}\bar{p}_{j}^{-2}} \right) \ln \left(\frac{4E^{2}}{x_{j}x_{j}(p_{\gamma}^{+})^{2}} \right) \\ &+ 2 \ln \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \left(\frac{1}{\epsilon} - \ln \left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\bar{p}_{j}^{-} - x_{j}\bar{p}_{j}^{-2})} \right) \right) - \ln^{2} \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \\ &+ \frac{3}{2} \ln \left(\frac{16\mu^{4}}{R^{4}\bar{p}_{j}^{-2}\bar{p}_{j}^{-2}} \right) - \ln \left(\frac{x_{j}}{x_{j}} \right) \ln \left(\frac{x_{j}\bar{p}_{j}^{-2}}{x_{j}\bar{p}_{j}^{-2}} \right) - \frac{3}{\epsilon} - \frac{2\pi^{2}}{3} + 7 \right] \end{split}$$

Cancellation of divergences

Total "divergence"

$$div = S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}$$

$$= 4 \left[\frac{1}{2} \ln \left(\frac{(x_{\bar{j}} \vec{p}_{\bar{j}} - x_{j} \vec{p}_{\bar{j}})^{4}}{x_{\bar{j}}^{2} x_{j}^{2} R^{4} \vec{p}_{\bar{j}}^{-2} \vec{p}_{j}^{-2}} \right) \left(\ln \left(\frac{4E^{2}}{x_{\bar{j}} x_{j} (p_{\gamma}^{+})^{2}} \right) + \frac{3}{2} \right) \right. \\ \left. + \ln \left(8 \right) - \frac{1}{2} \ln \left(\frac{x_{j}}{x_{\bar{j}}} \right) \ln \left(\frac{x_{j} \vec{p}_{j}^{-2}}{x_{\bar{j}} \vec{p}_{j}^{-2}} \right) + \frac{13 - \pi^{2}}{2} \right]$$

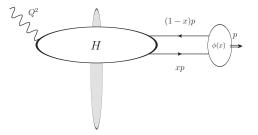
Our cross section is thus finite

Constructing a finite amplitude

Exclusive diffractive production of a light neutral vector meson

Diffractive DISThe shockwave formalismFirst step: open parton productionDijet productionVector meson productionPhenomenological applications00000000000000000000000000000000000000

Additional factorization



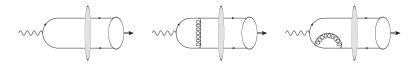
Once the amplitude is factorized in terms of impact factors, we perform an additional twist expansion in powers of a hard Björken scale (photon virtuality, Madelstam t..).

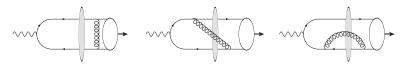
Then we can factorize, in terms of collinear factorization, the bilocal matrix element

$$\langle V(p)|\bar{\psi}(z_{12})\gamma^{\mu}\psi(0)|0
angle|_{z_{12}^{2}\rightarrow0} = p_{\mu}f_{V}\int_{0}^{1}dx\,e^{ix(p\cdot z_{12})}\varphi_{\parallel}(x)$$

 $\phi_{\parallel}(x) = meson Distribution Amplitude (DA)$

Exclusive diffractive production of a light neutral vector meson





$$\begin{array}{lll} \mathfrak{A}_{0} & = & -\frac{e_{V} f_{V} \varepsilon_{\beta}}{N_{c}} \int_{0}^{1} dx \varphi_{\parallel} \left(x \right) \int \frac{d^{d} \vec{p}_{1}}{\left(2\pi \right)^{d}} \frac{d^{d} \vec{p}_{2}}{\left(2\pi \right)^{d}} \\ & \times & \left(2\pi \right)^{d+1} \delta \left(p_{V}^{+} - p_{\gamma}^{+} \right) \delta \left(\vec{p}_{V} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} \right) \\ & \times & \Phi_{0}^{\beta} \left(x, \ \vec{p}_{1}, \ \vec{p}_{2} \right) \tilde{\mathcal{U}}_{12}^{\eta}. \end{array}$$

Leading twist for a longitudinally polarized meson Otherwise general kinematics, including transverse virtual photon (twist 3) contributions, and the photoproduction limit (for large t-channel momentum transfer)

ERBL evolution equation

Efremov, Radyushkin, Brodsky, Lepage evolution equation for a DA

Renormalization of the bilocal operator

 $\bar{\psi}(z_{12})\gamma^{\mu}\psi(0)$

 \Rightarrow Evolution equation for the distribution amplitude in the $\overline{\textit{MS}}$ scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

 $\mathcal{K} = \mathsf{ERBL} \ \mathsf{kernel}$

Diffractive DIS The shockwave formalism First step: open parton production Dijet production Vector meson production Phenomenological applications

ERBL evolution equation

Evolution equation for the distribution amplitude in the \overline{MS} scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

where we parameterize the ERBL kernel for consistency as

$$\mathcal{K}(x, z) = \frac{x}{z} \left[1 + \frac{1}{z - x} \right] \theta(z - x - \alpha)$$

+
$$\frac{1 - x}{1 - z} \left[1 + \frac{1}{x - z} \right] \theta(x - z - \alpha)$$

+
$$\left[\frac{3}{2} - \ln \left(\frac{x(1 - x)}{\alpha^2} \right) \right] \delta(z - x).$$

It is equivalent to the usual ERBL kernel

Diffractive DIS The shockwave formalism First step: open parton production Dijet production Oceano O

The amplitude we obtain is finite. For example the dipole $\gamma_{\rm L}^* \to V_{\rm L}$ contribution reads

$$\begin{split} \Phi_{1}^{+}\left(x\right) &= \int_{0}^{x} dz \left(\frac{x-z}{x}\right) \Phi_{0}^{+}\left(x-z\right) \\ &\times \left[1+\left(1+\left[\frac{1}{z}\right]_{+}\right) \ln \left(\frac{\left(\left((\bar{x}+z)\vec{p}_{1}-(x-z)\vec{p}_{2}\right)^{2}+(x-z)(\bar{x}+z)Q^{2}\right)^{2}}{\mu_{F}^{2}(x-z)(\bar{x}+z)Q^{2}}\right)\right] \\ &+ \left.\frac{1}{2} \Phi_{0}^{+}\left(x\right) \left[\frac{1}{2} \ln^{2}\left(\frac{\bar{x}}{x}\right)+3-\frac{\pi^{2}}{6}-\frac{3}{2} \ln \left(\frac{\left((\bar{x}\vec{p}_{1}-x\vec{p}_{2})^{2}+x\bar{x}Q^{2}\right)^{2}}{x\bar{x}\mu_{F}^{2}Q^{2}}\right)\right] \\ &+ \left.\frac{\left(p_{\gamma}^{+}\right)^{2}}{2x\bar{x}}\int_{0}^{x} dz \left[\left(\phi_{5}\right)_{LL}|_{\vec{p}_{3}=\vec{0}}+\left(\phi_{6}\right)_{LL}|_{\vec{p}_{3}=\vec{0}}\right]_{+}+\left(x\leftrightarrow\bar{x},\vec{p}_{1}\leftrightarrow\vec{p}_{2}\right). \end{split}$$

No end point singularity, even for a transverse photon and even in the photoproduction limit.

Diffractive DIS	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
					0000000

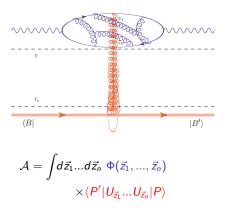
Practical use of such results for phenomenology

 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

 000
 0000000000
 000000
 000000
 000000
 0000000

Practical use of such results

- Compute the upper impact factor using the effective Feynman rules (~ BFKL gluon exchange!)
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the solution at a typical projectile rapidity η = Y
- Convolute the solution and the impact factor



 Diffractive DIS
 The shockwave formalism
 First step: open parton production
 Dijet production
 Vector meson production
 Phenomenological applications

 000
 0000000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 0000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 000000
 00

Residual parameter dependence

Required parameters

- Renormalization scale μ_R
- Factorization scale μ_F in the case of meson production (if assumed that $\mu_F \neq \mu_R$)
- Typical target rapidity Y_0
- Typical projectile rapidity Y

In the linear BFKL limit, the cross section only depends on $Y - Y_0$, so one only needs one arbitrary parameter s_0 defined by

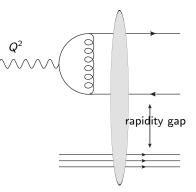
$$Y-Y_0=\ln\left(\frac{s}{s_0}\right).$$

Modifying any of these parameter results in a higher order (NNLO) contribution

	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications
000	000000000	000000000000	000000	000000	0000000

General amplitude

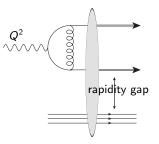
- Most general kinematics
- The hard scale can be Q^2 , t, M_X^2 ...
- The target can be either a proton or an ion, or another impact factor.
- Finite results for $Q^2 = 0$
- One can study ultraperipheral collision by tagging the particle which emitted the photon, in the limit $Q^2 \rightarrow 0$.



The general amplitude

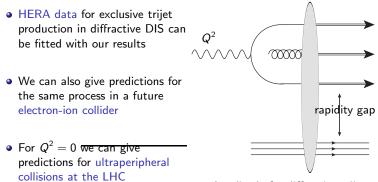
Phenomenological applications : exclusive dijet production at NLO accuracy

- HERA data for exclusive dijet production in diffractive DIS can be fitted with our results
- We can also give predictions for the same process in a future electron-ion or electron-proton collider (EIC, LHeC...)
- For $Q^2 = 0$ we can give predictions for ultraperipheral *pp* and *pA* collisions at the LHC



Amplitude for diffractive dijet production

Phenomenological applications : exclusive trijet production at LO accuracy

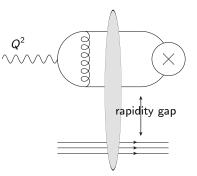


Amplitude for diffractive trijet production

[Ayala, Hentschinski, Jalilian-Marian, Tejeda-Yeomans]

Phenomenological applications

- Most general kinematics
- The hard scale can be Q^2 or t.
- The target can be either a proton or an ion, or another impact factor.
- Finite results for $Q^2 = 0$
- One can study ultraperipheral collision by tagging the particle which emitted the photon, in the limit $Q^2 \rightarrow 0$.



Amplitude for diffractive V production

	The shockwave formalism	First step: open parton production	Dijet production	Vector meson production	Phenomenological applications	
	000000000	000000000000			0000000	
Conclusion						

- We provided the full computation of the impact factor for the exclusive diffractive production of a forward dijet and of a light neutral vector meson with NLO accuracy in the shockwave approach
- It leads to an enormous number of possible phenomenological applications to test QCD in its Regge limit and towards saturation in past, present and future *ep*, *eA*, *pp* and *pA* colliders
- The linear limit of our result would provide interesting insight on the linearized CGC/BFKL equivalence at NLO accuracy