

From the Gribov ambiguity to confining effective models

Letícia F. Palhares

Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro

- Motivation: what is the effect of quark confinement in low-energy models?
- the Gribov(-Zwanziger) approach to quantize Yang-Mills theories beyond PT
- A confining quark model
- Thermodynamics of confined quarks and magnetic pressure
- Final comments and perspectives

Fundamental degrees of freedom are unphysical: not part of the spectrum;

Physical spectrum of bound states dynamically generated at low energies.

Yang-Mills gauge theories and QCD:

$$\mathcal{L}_{YM}^{E} = \left[\frac{1}{4}F_{\mu\nu}^{a}F_{\mu\nu}^{a}\right] + \overline{\Psi}_{f}[\gamma_{\mu}D_{\mu} + m_{f}]\Psi_{f}$$

[Gluons] and quarks

- **What is the mechanism??**
- What happens to quarks and gluons in the IR??
- How does confinement affect low-energy QCD models (effective actions) written in terms of quarks?

Fundamental degrees of freedom are unphysical: not part of the spectrum;

Physical spectrum of bound states dynamically generated at low energies.

Yang-Mills gauge theories and QCD:

$$\mathcal{L}_{\mathrm{YM}}^{\mathrm{E}} = \left[\frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} \right] + \overline{\Psi}_{f} [\gamma_{\mu} D_{\mu} + m_{f}] \Psi_{f}$$

[Gluons] and quarks

- **What is the mechanism??**
- What happens to quarks and gluons in the IR??
- How does confinement affect low-energy QCD models (effective actions) written in terms of quarks?

Fundamental degrees of freedom are unphysical: not part of the spectrum;

Physical spectrum of bound states dynamically generated at low energies.

Yang-Mills gauge theories and QCD:

$$\mathcal{L}_{YM}^{E} = \left[\frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} \right] + \overline{\Psi}_{f} [\gamma_{\mu} D_{\mu} + m_{f}] \Psi_{f}$$

[Gluons] and quarks

- **What is the mechanism??**
- What happens to quarks and gluons in the IR??
- How does confinement affect low-energy QCD models (effective actions) written in terms of quarks?

Fundamental degrees of freedom are unphysical: not part of the spectrum;

Physical spectrum of bound states dynamically generated at low energies.

Yang-Mills gauge theories and QCD:

$$\mathcal{L}_{YM}^{E} = \left[\frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} \right] + \overline{\Psi}_{f} [\gamma_{\mu} D_{\mu} + m_{f}] \Psi_{f}$$

[Gluons] and quarks

- **What is the mechanism??**
- What happens to quarks and gluons in the IR??
- How does confinement affect low-energy QCD models (effective actions) written in terms of quarks?

Quantizing Yang-Mills theories beyond Pert. Theory?

[Gribov (1978)]

The Gribov problem:

In the Landau gauge, for instance, the theory assumes the form

$$\int \mathcal{D}A\mathcal{D}\bar{c}\mathcal{D}c\mathcal{D}b \, e^{-S_{YM} + S_{gf}}$$

$$S_{gf} = b^a \partial_\mu A^a_\mu - \bar{c}^a \mathcal{M}^{ab} c^b \,, \qquad \mathcal{M}^{ab} = -\partial_\mu \left(\delta^{ab} \partial_\mu + g f^{abc} A^c_\mu \right)$$

- ullet Gribov copies o zero eigenvalues of the Faddeev-Popov operator \mathcal{M}^{ab} .
- Copies cannot be reached by small fluctuations around A=0(perturbative vacuum) \rightarrow pertubation theory works.
- Once large enough gauge field amplitudes have to be considered (non-perturbative domain) the copies will show up enforcing the effective breakdown of the Faddeev-Popov procedure.

Quantizing Yang-Mills theories: the Gribov approach

Gribov proposed a way to eliminate (infinitesimal) Gribov copies from the integration measure over gauge fields: the restriction to the (first) Gribov region Ω

$$\int [DA]\delta(\partial A) \det(\mathcal{M}) e^{-S_{YM}} \longrightarrow \int_{\Omega} [DA]\delta(\partial A) \det(\mathcal{M}) e^{-S_{YM}} \qquad S_{YM} = \frac{1}{4} \int_{x} F^{2}$$

with
$$\Omega = \left\{ A_{\mu}^a \; ; \; \partial A^a = 0, \mathcal{M}^{ab} > 0 \right\}$$

with
$$\Omega = \left\{ A^a_\mu \; \; ; \; \; \partial A^a = 0, \mathcal{M}^{ab} > 0 \right\}$$

$$\mathcal{M}^{ab} = -\partial_\mu \left(\delta^{ab} \partial_\mu + f^{abc} A^c_\mu \right) = -\partial_\mu D^a_\mu$$

(Faddeev-Popov operator)

The Gribov-Zwanziger action

The restriction can be implemented as a gap equation for the vacuum energy obtained as: [Zwanziger (1989,...)]

$$Z = e^{-V\mathcal{E}(\gamma)} = \int \mathcal{D}A \, \delta(\partial A) \, \det \mathcal{M} \, e^{-\left(S_{YM} + \gamma^4 H(A) - \gamma^4 V D(N^2 - 1)\right)} =: +\gamma^4 \mathcal{H}$$

The Gribov-Zwanziger action

The restriction can be implemented as a gap equation for the vacuum energy obtained as: [Zwanziger (1989,...)]

$$Z = e^{-V\mathcal{E}(\gamma)} = \int \mathcal{D}A \, \delta(\partial A) \, \det \mathcal{M} \, e^{-\left(S_{YM} + \gamma^4 H(A) - \gamma^4 V D(N^2 - 1)\right)} =: +\gamma^4 \mathcal{H}$$

$$\frac{\partial \mathcal{E}(\gamma)}{\partial \gamma} = 0 \Rightarrow \langle H(A) \rangle_{1PI} = VD(N^2 - 1)$$

$$H(A) = \int_{p} \int_{q} A_{\mu}^{a}(-p) \left(\mathcal{M}^{ab} \right)^{-1} A_{\mu}^{b}(q)$$

The Gribov-Zwanziger action

The restriction can be implemented as a gap equation for the vacuum energy obtained as: [Zwanziger (1989,...)]

$$Z = e^{-V\mathcal{E}(\gamma)} = \int \mathcal{D}A \, \delta(\partial A) \, \det \mathcal{M} \, e^{-\left(S_{YM} + \gamma^4 H(A) - \gamma^4 V D(N^2 - 1)\right)} =: +\gamma^4 \mathcal{H}$$

Using auxiliary fields, this can be cast in a *local* form: $Z = \int [\mathcal{D}\Phi] \, \delta(\partial A) \, \det \mathcal{M} \, e^{-S_{GZ}}$

The Refined Gribov-Zwanziger action

The GZ theory is unstable against the formation of certain dimension 2 condensates, giving rise to a refinement of the effective IR action:

[Dudal et al (2008)]

$$S_{\mathrm{YM}} \xrightarrow{\mathsf{Gribov}} S_{\mathrm{GZ}} = S_{\mathrm{YM}} + \gamma^4 \mathcal{H}$$
restriction(UV
 $\rightarrow \mathsf{IR}$)

Dynamical generation of dim.2 condensates

$$S_{RGZ} = S_{YM} + \gamma^4 \mathcal{H} + \frac{m^2}{2} AA - M^2 \left(\overline{\varphi} \varphi - \overline{\omega} \omega \right)$$

The Refined Gribov-Zwanziger action

The GZ theory is unstable against the formation of certain dimension 2 condensates, giving rise to a refinement of the effective IR action:

[Dudal et al (2008)]

$$S_{\mathrm{YM}} \xrightarrow{\mathsf{Gribov}} S_{\mathrm{YM}} \xrightarrow{\mathsf{Gribov$$

$$S_{\rm YM} \longrightarrow S_{\rm GZ} = S_{\rm YM} + \gamma^4 \mathcal{H}$$

Dynamical generation of dim.2 condensates

$$S_{\text{RGZ}} = S_{\text{YM}} + \gamma^4 \mathcal{H} + \frac{m^2}{2} AA - M^2 \left(\overline{\varphi} \varphi - \overline{\omega} \omega \right)$$

Gap equation for the Gribov param.:

$$\frac{\partial \mathcal{E}(\gamma)}{\partial \gamma} = 0 \Rightarrow \langle H(A) \rangle_{1PI} = VD(N^2 - 1)$$

The parameters M and m are obtained via minimization of an effective potential for:

$$\langle \overline{\varphi}\varphi - \overline{\omega}\omega \rangle \neq 0$$
 $\langle A^2 \rangle \neq 0$

Non-perturbative effects included: $(\gamma, M, m) \propto \mathrm{e}^{-\frac{1}{g^2}}$

A checklist for RGZ

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- **✓** consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results?

- **√** (can be cast in a) local and renormalizable action
- ✓ reduces to QCD (pure gauge) at high energies
- ✓ consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results?

$$\langle A^a_\mu A^b_\nu \rangle_p = \delta^{ab} \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) D(p^2)$$

$$D_{\text{fit}}(p^2) = C \frac{p^2 + s}{p^4 + u^2 p^2 + t^2}$$

$$C = 0.56(0.01), u = 0.53(0.04) \,\text{GeV},$$

$$t = 0.62(0.01) \,\text{GeV}^2$$
, $u = 2.6(0.2) \,\text{GeV}^2$

poles:
$$m_{\pm}^2 = (0.352 \pm 0.522i) \text{GeV}^2$$

$$D_{\text{RGZ}}(p^2) = \frac{p^2 + M^2}{p^4 + (M^2 + m^2)p^2 + 2g^2N\gamma^4}$$

√ consistent with lattice IR results

A checklist for RGZ

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- ✓ consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- **✓** consistent with lattice IR results (propagators)
- **✓** physical spectrum of bound states??

Glueball masses are obtained by computing two-point correlation functions of composite operators with the appropriate quantum numbers and casting them in the form of a Källén-Lehmann spectral representation.

J^{PC}	confining gluon propagator
0++	2.27
2^{++}	2.34
0-+	2.51
2^{-+}	2.64

[Dudal, Guimaraes, Sorella, PRL(2011), PLB(2014)]

- -Lattice: (1) Y. Chen et al. PRD 73, 014516 (2006)
- -Flux tube model: M. Iwasaki et al. PRD 68, 074007 (2003).
- -Hamiltonian QCD: A. P. Szczepaniak and E. S. Swanson, PLB 577, 61 (2003).
- -AdS/CFT: K. Ghoroku, K. Kubo, T. Taminato and F. Toyoda, arXiv:1111.7032.
- -AdS/CFT: H. Boschi-Filho, N. R. F. Braga JHEP 0305, 009 (2003)

\int^{PC}	Lattice	Flux tube model	Hamiltonian QCD	ADS/CFT
0^{++}	1.71	1.68	1.98	1.21
2^{++}	2.39	2.69	2.42	2.18
0-+	2.56	2.57	2.22	3.05
2^{-+}	3.04	-	_	_

RGZ: Correct hierarchy of masses

- (can be cast in a) local and renormalizable action
- reduces to QCD (pure gauge) at high energies
- **✓** consistent with gluon 'confinement': confining propagator (no physical propagation; violation of reflection positivity)
- ✓ consistent with lattice IR results (propagators) [Cucchieri et al, PRD(2012)]
- ✓ physical spectrum of bound states? Glueballs w/ masses compatible w/ lattice [Dudal, Guimaraes, Sorella, PRL(2011), PLB(2014)]
- **√** thermodynamics and phase structure:

A Polyakov-loop potential is computed and a phase transition of the right order is obtained for SU(2)_C! [Canfora et al EPJC75 (2015) 326]

Related studies: Curci-Ferrari/Landau-DeWitt massive gauges [Reinosa, Serreau, Tissier, Wschebor, PRD93 (2016) 105002, PRD92 (2015) 025021 [heavy quarks], PRD91 (2015) 045035]

✓ exact BRST invariance, with a modified BRST symmetry.

Extension to the matter sector: COLOR confinement

How can this be extended to the confined matter sector?

PROPOSAL / ANSATZ: Faddeev-Popov operator as a carrier of color confinement.

A general gauge-matter IR action reads: $S_{
m IR} = S_{
m YM} + \sum_F M_F {\cal H}_F$

$$\mathcal{H}_{F} = -g^{2} \int \frac{d^{D}p}{(2\pi)^{D}} \int \frac{d^{D}q}{(2\pi)^{D}} (T^{b})^{ij} F^{j}(-p) (\mathcal{M}^{-1})^{bc}_{pq} (T^{c})^{ik} F^{k}(q).$$

where F^j stands for a fundamental confined field $=\{A^a_\mu,\phi^a,\psi^i\}$

- → Can be localized, resulting in a renormalizable action that reduces to QCD (quark case) in the UV.
- Tree-level propagator which fits lattice data and violates positivity
- → Can be applied to SUSY theories, like N=1 SYM. [Capri et al, EPJC (2014)]
- → Can be used to estimate meson masses [Dudal, Guimaraes, LFP, Sorella, Annals Phys. (2016)]

Propagators for confined matter

Quark case:

$$\langle \psi^i(k)\bar{\psi}^j(-k)\rangle = \delta^{ij} \frac{-ik_\mu\gamma_\mu + \mathcal{A}(k^2)}{k^2 + \mathcal{A}^2(k^2)},$$

where

$$\mathcal{A}(k^2) = m_{\psi} + \frac{g^2 \sigma^3 C_F}{k^2 + \mu_{\psi}^2} ,$$

where m_{ψ} is the fermion mass and μ_{ψ} is the condensate mass parameter.

➡ With fit values, the propagator displays: one real pole and two complex-conjugated ones

Thermodynamics of confined quarks

The simplest setup to test for consequences of this approach of quark confinement: interactions enter only through the non-perturbative background/propagator

$$\mathcal{L}_{IRq} = \bar{\psi} \left[i \partial - \mathcal{M}(\partial^2) \right] \psi \qquad \mathcal{M}(\partial^2) = m_0 + \frac{M_3}{-\partial^2 + m^2}$$

- Good description of Landau-gauge lattice quark mass function
 - In the UV: reduces to free quarks
 - In the IR: positivity violation/ absence from spectrum
- Systematic improvements are possible: e.g. perturbative expansion in powers of g around the nontrivial vacuum!
- Even though non-perturbative, it is a quadratic model: Exact partition function, extracted from determinant of nonlocal operator:

$$Z(T,\mu) = \int [D\psi][D\bar{\psi}] \exp[-S_{eff}(\psi,\bar{\psi})]$$

where

$$S_{eff}(\psi, \bar{\psi}) = \int_0^{\beta} d^4x \ \bar{\psi} \left[i\gamma_4(\partial_4 - \mu) - i\vec{\gamma} \cdot \vec{\nabla} \ - \frac{M_3}{-(\partial_4 - \mu)^2 - \vec{\partial}^2 + m^2} \right] \psi$$

Thermodynamics of hot confined quarks $(N_f = 2)$

• Thermodynamic quantities are non-trivial as well as stable for all temperatures. Qualitative behavior is compatible with lattice data for a thermal crossover.

- Pressure:

- Trace Anomaly ("interaction measure"):

Propagator fits at T = 0)

Bag-constant behaviour for hot confined quarks

• A bag model fit for intermediate temperatures above the peak (T = [300,800] MeV) reveals an effective negative pressure (bag constant) naturally present in the model:

$$\Delta_{\text{fit}}(T) = a + \frac{b}{T^2} + \frac{4B}{T^4}$$

$$a = -0.069$$

$$b = 0.062 \text{ GeV}^2$$

$$B = (141 \text{ MeV})^4$$

Another indication of built-in confinement?

Parameter set:

 $M_3 = 0.196~GeV^3$ $m^2 = 0.639~GeV^2$ $m_0 = 0.014~GeV$ (From: lattice quark
Propagator fits at T = 0)

Cold and dense thermodynamics

<u>- Pressure @ T = 0:</u>

- gluons suppressed: better approximation, but no comparison with lattice available (Sign problem)
- dynamically-generated threshold mass?
- Silver Blaze problem: ok!
- No phase transition in this approximation (T- and µ-independent parameters)

[Guimaraes, Mintz, LFP, PRD92 (2015) 085029]

- Pressure for nonzero T: thermal excitation

- smoothening of the transition
- shift of inflection point to lower μ's.

```
Parameter set:
      M_3 = 0.196 \, GeV^3
     m^2 = 0.639 \, GeV^2
                               heavier world!
      m_0 = 0.014 \; GeV
(From: lattice quark
```

Propagator fits at T = 0)

Introducing an Abelian background field

[Mintz,LFP, in prep.]

- Minimal coupling prescription: $\partial_{\mu}\mapsto D_{\mu}=\partial_{\mu}-iq_fA_{\mu}$ $A_{\mu}=(0,-By/2,Bx/2,0)$
- In the case of the nonlocal propagator, the preservation of U(1) symmetry requires that all derivatives become covariant ones (this can be formally checked in the local setup!):

$$\mathcal{L}_{IRq}(B) = \bar{\psi}_i^{\alpha} \left[i(\mathcal{D})_{ij}^{\alpha\beta} - \delta_{ij} \delta^{\alpha\beta} \left(\frac{M_3}{-D^2 + m^2} + m_0 \right) \right] \psi_j^{\beta}$$

 As in the thermal case, the determinant of the nonlocal operator may be decomposed in determinants of the standard form:

$$\det(-D^2 + K)$$

whose eigenvalues are the usual Landau levels:

$$\lambda(K) = \omega_n^2 + p_z^2 + K + |q_f|B(2l+1), \qquad l \in \mathbb{Z}_+$$

Results for hot confined quarks in a magnetic background

- Thermal Pressure @ different B's $(N_f = 2)$:

[Mintz,LFP, in prep.]

Parameter set:

 $M_3 = 0.196 \, GeV^3$ $m^2 = 0.639 \, GeV^2$ $m_0 = 0.014 \; GeV$ (From: lattice quark Propagator fits at T = 0)

heavier world!

- larger confinement effects for lower temperature: may affect critical region
- expect larger corrections for light quarks: for large current masses, propagator becomes closer to a constant (~ usual 'constituent' quark)

Results for hot confined quarks in a magnetic background

[Mintz,LFP, in prep.]

DISCLAIMERS: $N_f = 2$, heavier quarks, no gluons!

Parameter set:

 $M_3 = 0.196 \, GeV^3$ $m^2 = 0.639 \, GeV^2$ $m_0 = 0.014 \; GeV$ (From: lattice quark Propagator fits at T = 0)

Final comments

- The mechanism of confinement is still not understood.
- The *Gribov problem* is present and should profoundly affect the IR regime of gauge-fixed non-Abelian gauge theories, being possibly connected with *confinement*.
- The RGZ framework represents a consistent scenario to study the non-perturbative IR physics and has provided interesting results for the gluon sector.
- We have proposed an extension of this scenario to the case of quark confinement, including a tree-level propagator compatible with Landau-gauge lattice data. Results for the thermodynamics of the model in the simplest approximation display consistent physical behavior for all T, mu, and B investigated.
- <u>Perspectives:</u> chiral condensate (current-mass dependence or couple to mesons) and phase structure; Polyakov loop through background-field method; dressed vertices.
- Many caveats (very distant perspectives!:)), of course: dynamical origin of matter horizon, physical operators, unitarity... Recent advances on gauge invariance!

[Capri et al., PRD94 (2016) 065009; 025035; PRD95 (2017) 045011]

Thank you for your attention!