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The aim of this work

Analyze the impact of an external magnetic field
on the QCD phase diagram

Temperature

Quark-Gluon

Superconductor

Phases

e Do NJL-type models agree with LQCD (up =0, B # 0)?
e What is the phase diagram structure (up # 0, B # 0)?
e The impact of B on the Critical-End-Point (CEP)?



The importance of magnetic fields

e Magnetized neutron stars: low 71" and high up region
e First phases of the Universe: high T" and low pp region

e Heavy-lon Collisions (HIC): broad region of the phase diagram
e Strong magnetic fields are generated in HIC

@ RHIC = eBmas ~ 5m2 = 0.09 GeV?
@ LHC — eBmaz =~ 15m2 ~ 0.27 GeV?

One fundamental goal of HIC experiments

is mapping the QCD phase diagram

e A considerable effort is being devoted in finding experimental
signatures for the presence of a Critical-End-Point



The PNJL model

Polyakov loop extended Nambu-Jona—-Lasinio (PNJL) model,
- 1
£ = GlipD" = e g+ Loym + Laee +U (0, 8:T) = 7 Fu B,
where
8
Lom =G 3 [(@0a0)* + (@7500)?]
a=0

Ler = —K {det [q(1 + 75)q] + det [g(1 — 75)q]}

The covariant derivative is given by

DM =9 —iqr AR — i A

e A static and constant B field in the z direction AEM = 0211 B



The PNJL model

For the Polyakov loop potential we use

“ (q)ﬁ; ") S (2T) O + b(T)In [1 - 66 + 4(* 4 &°) — 3(®)?|

Model parametrization/regularization

e NJL: P. Rehberg, et al. PRC53, 410
e Polyakov potential: S. Roessner, et al. PRD75, 034007
e Magpnetic field: D. P. Menezes, et al. PRC80, 065805




Quark condensate: PNJL model and LQCD
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e The Magnetic Catalysis effect is present at any temperature

(PNJL model)
e A qualitatively agreement is obtained with LQCD at low

temperatures (T < T))



Quark condensate: PNJL model and LQCD
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The Magnetic Catalysis effect is present at any temperature

(PNJL model)
A qualitatively agreement is obtained with LQCD at low

temperatures (T < T))

On the transition region (7' ~ T} ) occurs Inverse Magnetic Catalysis:
the magnetic field weakens the quark condensate



Transition temperatures: PNJL model
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e Both the deconfinement and the chiral (pseudo) transition
temperatures increase with B
e The deconfinement temperature is quite insensitive to B



Transition temperatures: PNJL
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e Both the deconfinement and the chiral (pseudo) transition

temperatures increase with B

e The deconfinement temperature is quite insensitive to B

In LQCD, both (pseudo) critical temperatures decrease with B



Quark interaction with a magnetic field dependence

The discrepancy between low energy QCD models and LQCD must
emerge from the full dynamics of QCD

e IMC arises from the quarks back-reaction to nontrivial
rearrangement of the gluonic configurations (LQCD)
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and strong coupling are affected by B
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Can an agreement between NJL-type models and LQCD be
obtained by assuming a magnetic field dependence on the
scalar coupling G?



The magnetic field dependence of G

e The TX(B)/TX(eB = 0) (given by LQCD (6. Bali, et al. JHEP 1202 (2012) 044])
is obtained by the following Gs(eB) dependence

1 240¢3
Gs(¢) = Gg <%> , where (= eB/A%CD

1 ‘ ‘ ; ; 1.6
— Gy(eB) 7
075 S 14t - G e
2 I . « LQCD -7
B _ P
Q05 <12t o
O <o .-
= & PR
0 L L L L 0.8 . . . .
0 02 04 06 08 1 0 02 04 06 08 1
eB [GeV?] eB [GeV?]

e The critical temperature decrease ratio is possible via the G5(eB)

e Furthermore, the crossover nature of the transitions is preserved



Quark condensate: G vs. Gs(eB)
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e G4(eB) still leads to MC at low temperatures
e B enhances the quark condensate

e G,(eB) generates IMC on the transition temperature region
e B weakens the quark condensate



Polyakov loop: G vs. G4(eB)
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e The Polyakov loop shows the following trends (as in LQCD):

for a given temperature, it increases with B and changes strongly on

the transition region
The inflection point moves to smaller temperatures with increasing

B



Pseudocritical temperatures with G(eB)
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e Both chiral and deconfinement pseudocritical temperatures
decrease with B

e They have a very similar dependence on B

e TX —T2 can be reduced by adjusting the Ty (Polyakov potential)



Chiral phase diagram
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Chiral phase diagram
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Strange quark phase diagram
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Strange—quark condensate (eB=0.2 ,G_s)
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Strange quark phase diagram
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Deconfinement phase diagram
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Deconfinement phase diagram
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The Critical-End-Point (CEP)
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The effect of IMC (Case IIA) on CEP:

e For eB > 0.3 GeV2, it leads to a lower T¢FF and p&EF.

e The ugEP is a decreasing function of B.

e For higher B, the crossover at ug = 0 might change to a
first-order phase transition



Conclusions

e An agreement of effective models with LQCD results at ug =0 is
crucial in order to have predictive power on the magnetized QCD
phase diagram

e Using the Gs(eB), we were able to conclude that the IMC effect
affects the QCD phase structure

e The CEP’s location strongly depends on whether the IMC is taken
into account

e As the magnetic field increases, the CEP moves towards g = 0,
indicating that the transition might change from a crossover to a
first-order phase transition for strong enough magnetic fields



