# Chern-Simons 5-form and Holographic Baryon

#### Shigeki Sugimoto (YITP, Kyoto)

based on arXiv:1612.09503 written with Pak Hang Chris Lau (MIT)

talk at excited QCD 2017, 5/9/2017 @ Sintra, Poltugal

# 1 Introduction

- Holographic QCD = Holographic dual of "QCD" ("QCD" is a gauge theory that flows to QCD at low energies)
- Meson effective theory turns out to be
   5 dim U(N<sub>f</sub>) YM-CS theory in a curved space-time.

   <sup>1</sup> number of flavors
   [Son-Stephanov 03, Sakai-S.S. 04,05]

#### Success

- reproduces a lot of properties of QCD and hadrons chiral symmetry breaking, confinement, phase transition, etc.
  - Derivation" of old hadron models :
    - \* Vector meson dominance model (interaction with photon)
    - \* Hidden local symmetry (model for rho, a1, ... )
    - \* Skyrme model (model for baryon)
    - \* Gell-Mann Sharp Wagner model (model for omega meson)
- A lot of masses and couplings can be computed quite easily (at least in some approximation) and they are in reasonably good agreement with experiments.



$$S_{\rm CS} = \frac{N_c}{24\pi^2} \int_{M_5} \omega_5(A) \qquad \qquad \omega_5(A) = \operatorname{Tr}\left(AF^2 - \frac{1}{2}A^3F + \frac{1}{10}A^5\right) \\ d\omega_5(A) = \operatorname{Tr}(F^3)$$

This term is not gauge invariant, if the manifold has boundaries:

$$\delta_{\Lambda}\omega_{5}(A) = d\omega_{4}^{1}(\Lambda, A) \qquad \qquad \omega_{4}^{1}(A) = \operatorname{Tr}\left(\Lambda d\left(A d A + \frac{1}{2}A^{3}\right)\right)$$
$$\delta_{\Lambda}A = D_{A}\Lambda$$

Reproduces the chiral anomaly in QCD

$$\delta_{\Lambda}S_{\rm CS} = \frac{N_c}{24\pi^2} \int_{M_4} \left( \omega_4^1(\Lambda, A)|_{z=+\infty} - \omega_4^1(\Lambda, A)|_{z=-\infty} \right)$$
  
with the standard identification  $(\widehat{A}_-, \widehat{A}_+) = (A|_{z=-\infty}, A|_{z=+\infty})$ 

external U(Nf)<sub>L</sub> x U(Nf)<sub>R</sub> gauge fields

boundary values of the 5 dim gauge field

### WZW term from CS 5-form

• pion field: 
$$U(x^{\mu}) = \mathsf{P} \exp\left(-\int dz \, A_z(x^{\mu}, z)\right)$$

• vector mesons:  $A_{\mu}(x^{\mu}, z) \longrightarrow B_{\mu}^{(1)}(x^{\mu}), \ B_{\mu}^{(2)}(x^{\mu}), \ B_{\mu}^{(3)}(x^{\mu}), \ \cdots$ interpreted as  $\rho, \ a_1, \ \rho', \ \cdots$ 

One can show

terms with vector mesons

reproduces the WZW term in QCD

# Holographic baryon

Baryons are "instantons" in 4 dim space

$$n_B = \frac{1}{8\pi^2} \int_{\Sigma_4} \operatorname{Tr}(F^2) :: \text{``instanton'' number'}$$
  
baryon number 
$$\Sigma_4 = \{(x^1, x^2, x^3, z)\}$$
  
follows from  $S_{CS} = \frac{1}{24\pi^2} \int_{5\dim} A^{\cup(1)} \operatorname{Tr}(F^2) + \cdots$ 

This is analogous to the Skyrme model

$$n_B = \frac{1}{24\pi^2} \int_{S^3} \text{Tr}((U^{-1}dU)^3) : \text{winding \# of } U \text{ on } S^3$$
$$S^3 = \{(x^1, x^2, x^3)\} \cup \{\infty\}$$

#### So far it looks good ...

# 2 Problems

**1** Consider 
$$\Sigma_4 = \{(x^1, x^2, x^3, z)\} = S^3 \times \mathbf{R}$$

$$n_B = \frac{1}{8\pi^2} \int_{\Sigma_4} \operatorname{Tr}(F^2) = \frac{1}{8\pi^2} \int_{S^3} \left( \omega_3(A)|_{z=+\infty} - \omega_3(A)|_{z=-\infty} \right)$$
CS 3-form  $d\omega_2(A) = \operatorname{Tr}(F^2)$ 

This is *not* consistent with  $(\widehat{A}_{-}, \widehat{A}_{+}) = (A|_{z=-\infty}, A|_{z=+\infty})$ ext. gauge field boundary values

In particular, configurations with  $n_B \neq 0$  and  $\hat{A}_{\pm} = 0$  should be allowed.

- Then, how can we relate  $(\widehat{A}_{-}, \widehat{A}_{+})$  and  $(A|_{z=-\infty}, A|_{z=+\infty})$ ?
- If  $(\widehat{A}_{-}, \widehat{A}_{+}) \neq (A|_{z=-\infty}, A|_{z=+\infty})$ , the naïve CS-term does not give the correct Chiral anomaly. How can we fix it?

2 Hata and Murata (2007) pointed out that the CS-term does not lead to a constraint needed to get the correct baryon spectrum for N<sub>f</sub> = 3.

 $\rightarrow$  see next

The goal of this talk is to provide a solution to these problems.

# **Constraint for Baryon spectrum**

Baryons in Skyrme model for Nf = 3

Baryons in Skyrme model for Nf = 3 solution for Nf=  
To quantize fluctuations around soliton solution,  
$$U(x^{\mu}) = a(t)U^{Cl}(\vec{x})a(t)^{-1}$$
  $U^{Cl} = \begin{pmatrix} U_0 \\ U_0 \\ 1 \end{pmatrix}$   
pion field collective coordinates

→ Quantum mechanics for  $a(t) \in SU(3)$ 

One can show:  

$$S_{WZW} = \frac{N_c}{\sqrt{3}} \operatorname{Tr}(t_8 a^{\dagger} \dot{a}) \qquad t_8 = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & & \\ & 1 & \\ & & -2 \end{pmatrix}$$

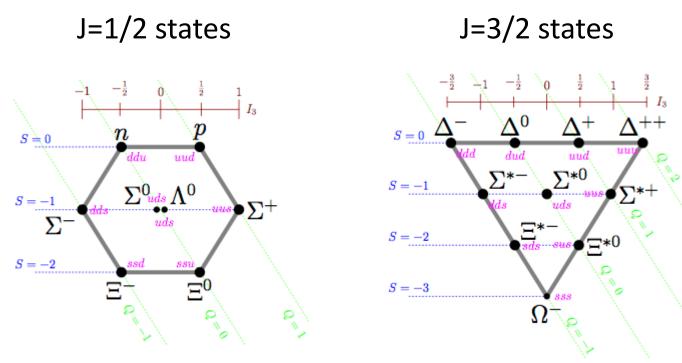
This term leads to a constraint on the wave function:

$$\psi(ae^{it_8\theta}) = \psi(a)e^{i\frac{N_c}{2\sqrt{3}}\theta}$$

solution for  $N_{f=2}$ 

Constraint for Baryon spectrum  $\psi(ae^{it_8\theta}) = \psi(a)e^{i\frac{N_c}{2\sqrt{3}}\theta}$ 

It is known that the correct baryon spectrum is obtained (at least qualitatively) with this constraint.



(Figures taken from <a href="https://glenmartin.wordpress.com/2014/01/04/the-story-of-quarks-part-i/">https://glenmartin.wordpress.com/2014/01/04/the-story-of-quarks-part-i/</a>)

#### What about baryons in holographic QCD ?

Baryons are solitons in 5 dim YM-CS theory

$$n_B = \frac{1}{8\pi^2} \int_{\Sigma_4} \operatorname{Tr}(F^2)$$

- Similar analysis can be done in holographic QCD, and again reduces to QM of  $a(t) \in SU(3)$  (for Nf = 3).
- Solution The CS-term should reproduce  $S_{WZW} = \frac{N_c}{\sqrt{3}i} \text{Tr}(t_8 a^{\dagger} \dot{a})$ However, Hata and Murata claimed

$$S_{CS} = 0 \; !!$$

They proposed a new CS-term

$$S_{\rm CS}^{\rm HM} = \frac{N_c}{24\pi^2} \int_{M_6} {\rm Tr}(F^3) \qquad \partial M_6 = M_5$$

However, it doesn't reproduce the chiral anomaly of QCD.

What should we do?

# 3 Proposal

Consider the following situation:

$$z = -\infty$$

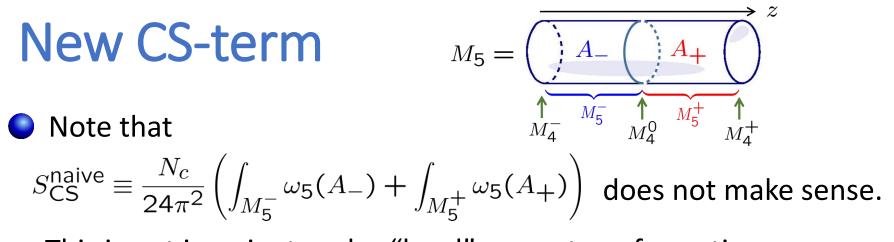
$$M_{5} = \underbrace{\bigwedge_{M_{4}^{-}}^{Z} A_{4}}_{M_{5}^{-}} \underbrace{\bigwedge_{M_{4}^{0}}^{A_{4}^{+}} A_{5}^{+}}_{M_{4}^{+}} A_{4}^{+} \simeq M_{4}^{-} \simeq M_{4}^{0} \simeq S^{1} \times S^{3}$$

$$M_{5}^{-} \underbrace{\bigwedge_{M_{4}^{-}}^{A_{4}^{+}} A_{4}^{+}}_{gluing condition}$$

$$A_{+} = A_{-}^{h} \equiv hA_{-}h^{-1} + hdh^{-1} \text{ on } M_{5}^{-} \cap M_{5}^{+} \simeq M_{4}^{0} \times (-\epsilon, \epsilon)$$
(we take  $\epsilon \to 0$ )

• We identify the external gauge fields as  $\hat{A}_{\pm} = A_{\bigoplus}|_{z=\pm\infty}$ Then, one can show (for  $\hat{A}_{\pm} = 0$ )

$$n_B = \frac{1}{8\pi^2} \int_{S^3 \times \{z\}} \operatorname{Tr}(F^2) = \frac{1}{24\pi^2} \int_{S^3} \operatorname{Tr}\left((hdh^{-1})^3\right) = \text{ winding \# of } h \text{ on } S^3$$



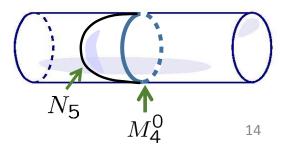
This is not invariant under "local" gauge transformations (gauge transformation that are trivial at the boundaries)

$$\delta_{\Lambda} S_{\text{CS}}^{\text{naive}} = \frac{N_c}{24\pi^2} \int_{M_4^0} \left( \omega_4^1(\Lambda, A_-) - \omega_4^1(\Lambda, A_+) \right) \neq 0 \quad !$$

Our proposal

$$S_{\rm CS}^{\rm new} = S_{\rm CS}^{\rm naive} + \frac{N_c}{24\pi^2} \left( \frac{1}{10} \int_{N_5} {\rm Tr}(\tilde{h}d\tilde{h}^{-1})^5) + \int_{M_4^0} \alpha_4(dh^{-1}h, A_-) \right)$$

 $N_5$  is 5dim manifold satisfying  $\partial N_5 = M_4^0$  $\tilde{h}: N_5 \to SU(N_f)$  s.t.  $\tilde{h}|_{M_4^0} = h$  $\alpha_4(V, A) \equiv \frac{1}{2} \operatorname{Tr} \left( V(A^3 - AF - FA) + \frac{1}{2} VAVA + V^3A \right)$ 



# Consistency check

$$S_{\rm CS}^{\rm new} = S_{\rm CS}^{\rm naive} + \frac{N_c}{24\pi^2} \left( \frac{1}{10} \int_{N_5} {\rm Tr}(\tilde{h}d\tilde{h}^{-1})^5) + \int_{M_4^0} \alpha_4(dh^{-1}h, A_-) \right)$$

One can show the following:

- $\checkmark$  reduces to  $S_{CS}$  when *h* is topologically trivial
- invariant under the "local" gauge transformation
- reproduces the correct chiral anomaly in QCD

### Other useful expressions

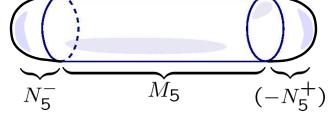
Suppose the gauge field A is globally well-defined on  $M_5$ Then,  $A|_{z=\pm\infty}$  and the external gauge fields  $\hat{A}_{\pm}$  are related by

 $A|_{z=\pm\infty} = \hat{A}_{\pm}^{h_{\pm}} \text{ with } h_{\pm} : M_{4}^{\pm} \to U(N_{f}) M_{5} = \underbrace{ \begin{array}{c} z = -\infty \\ & A \end{array}}_{M_{4}^{-}} A \underbrace{ \begin{array}{c} z = +\infty \\ & A \end{array}}_{M_{4}^{+}} X_{4}^{+} X_{4$ 

$$S_{\text{CS}}^{\text{new}} = S_{\text{CS}}(A) + \frac{N_c}{24\pi^2} \sum_{\epsilon=\pm} \epsilon \left( \frac{1}{10} \int_{N_5^{\epsilon}} \text{Tr}(\tilde{h}_{\epsilon}^{-1} d\tilde{h}_{\epsilon})^5) - \int_{M_4^{\epsilon}} \alpha_4(dh_{\epsilon}^{-1} h_{\epsilon}, \hat{A}_{\epsilon}) \right)$$

 $N_5^{\pm}$  is 5dim manifold satisfying  $\partial N_5^{\pm} = M_4^{\pm}$   $(N_5^{\pm} \simeq D \times S^3)$  $\tilde{h}_{\pm} : N_5^{\pm} \to U(N_f)$  s.t.  $\tilde{h}_{\pm}|_{M_4^{\pm}} = h_{\pm}$  $N_5^{\pm}$   $M_5$  Note that  $\widetilde{M}_5 = N_5^- \cup M_5 \cup (-N_5^+)$  is a 5 dim mfd without bdry Suppose there exists  $M_6$  s.t.  $\partial M_6 = \widetilde{M}_5$ 

Suppose A can be extended to  $M_6$  $\widehat{A}_{\pm}$  can be extended to  $N_5^{\pm}$ 



Then, one can show

$$S_{\text{CS}}^{\text{new}} = \frac{1}{24\pi^2} \left( \int_{M_6} \text{Tr} F^3 + \int_{N_5^+} \omega(\hat{A}_+) - \int_{N_5^-} \omega(\hat{A}_-) \right)$$
  
Hata-Murata's proposal

With this expression, it is easy to show that it is invariant under the "local" gauge tr. and reproduces chiral anomaly in QCD.

#### Constraint for the baryon spectrum

#### Collective coordinates are introduced as follows

 $A_0 = 0$  gauge [Hata-Sakai-S.S.-Yamato 2007]

$$A_M = VA_M^{cl}V^{-1} + V\partial_M V^{-1} \quad (M = 1, 2, 3, z)$$
  
Classical solution  
with  $A_M^{cl} \to h_{\pm}^{cl}(\vec{x})\partial_M h_{\pm}^{cl-1}(\vec{x}) \quad (z \to \pm \infty)$ 

Then, the collective coordinates  $a(t) \in SU(3)$ are hidden in the boundary values of V as

$$V \to h_{\pm}^{\mathsf{cl}}(\vec{x})a(t)h_{\pm}^{\mathsf{cl}-1}(\vec{x}) \quad (z \to \pm \infty)$$

SYM and imposing the EOM for  $A_0$ , we obtain the expected term (for  $N_f = 3$ ,  $n_B = 1$ ):

$$S_{\rm YM} + S_{\rm CS}^{\rm new} = \frac{N_c}{\sqrt{3}i} {\rm Tr}(t_8 a^{\dagger} \dot{a}) + \cdots$$



We proposed a new CS term that seems to work:

$$S_{\rm CS}^{\rm new} = S_{\rm CS}^{\rm naive} + \frac{N_c}{24\pi^2} \left( \frac{1}{10} \int_{N_5} {\rm Tr}(\tilde{h}d\tilde{h}^{-1})^5) + \int_{M_4^0} \alpha_4(dh^{-1}h, A_-) \right)$$



- Find a classical solution and compute the baryon mass
- Compute the currents and discuss the static properties of the baryons.
- Include quark mass to make more serious analysis.

See [Hata-Murata 07, Hashimoto-Iizuka-Ishii-Kadoh 09, ...]

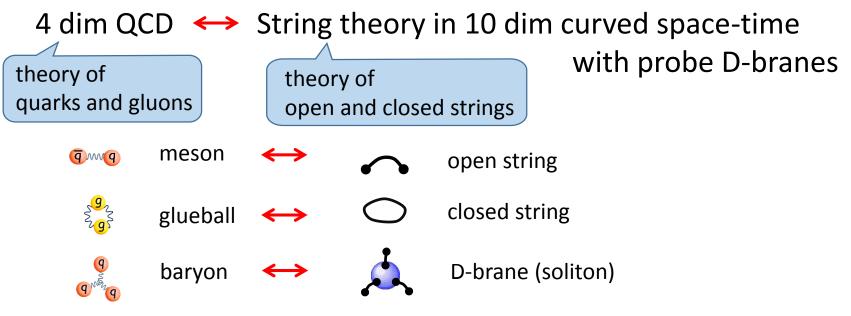
Thank you

#### Backup slides

#### **Key features:**

4 dim QFT  $\leftrightarrow$  higher dim theory with gravity

In our case,



Global symmetry in QFT  $\leftrightarrow$  Gauge symmetry in gravity theory

In our case,

Chiral symmetry  $U(N_f)_L \times U(N_f)_R \qquad (\widehat{A}_-, \widehat{A}_+) \quad \longleftrightarrow \quad (A|_{z=-\infty}, A|_{z=+\infty})$ 

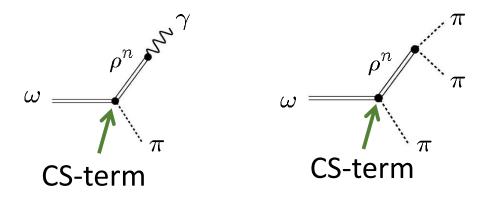
associated external gauge fields

boundary values of the 5 dim gauge field

22

# GSW model

• The relevant diagrams for  $\omega \to \pi^0 \gamma$  ,  $\omega \to \pi^0 \pi^+ \pi^-$ 



→ Exactly the same structure as that in the **GSW model** [Gell-Mann – Sharp – Wagner 1962]

The CS-term seems to work even for interactions with vector mesons!

### Quantization [Adkins-Nappi-Witten 1983]

1. Pick a soliton solution  $U^{cl}(\vec{x})$  representing a baryon at  $\vec{x} = \vec{0}$ pion field

$$U(x^{\mu}) = a U^{\mathsf{cl}}(\vec{x} - \vec{X}) a^{-1} \quad (a \in SU(N_f))$$

is again a solution with the same energy.

 $(\vec{X}, a)$  : collective coordinates

2. Promote  $(\vec{X}, a)$  to be time dependent variables and insert  $U(x^{\mu}) = a(t) U^{\mathsf{cl}}(\vec{x} - \vec{X}(t)) a(t)^{-1}$  into the action.

 $S_{\text{Skyrme}}(U) = \int dt \, L(\vec{X}, a, \dot{\vec{X}}, \dot{a}) \xrightarrow{\rightarrow} \text{Quantum mechanics}$ for  $(\vec{X}, a)$ 

 Solve the Schrödinger eq. and compute whatever you want (energy, magnetic moments, charge radius, etc.) for the baryon states.

# This program was pursued in the Nf=2 case by Adkins-Nappi-Witten (1983)

**Results:** 

| Quantity                                     | Prediction | Experiment |
|----------------------------------------------|------------|------------|
| M <sub>N</sub>                               | input      | 939 MeV    |
| $M_{\Delta}$                                 | input      | 1232 MeV   |
| $F_{\pi}$                                    | 129 MeV    | 186 MeV    |
| $\langle \mathbf{r}^2 \rangle_{I=0}^{1/2}$   | 0.59 fm    | 0.72 fm    |
| $\langle \mathbf{r}^2 \rangle_{M,I=0}^{1/2}$ | 0.92 fm    | 0.81 fm    |
| $\mu_{\rm p}$                                | 1.87       | 2.79       |
| $\mu_{ m n}$                                 | -1.31      | -1.91      |
| $\frac{\mu_{\rm p}}{\mu}$                    | 1.43       | 1.46       |
| $ \mu_n $<br>8 <sub>A</sub>                  | 0.61       | 1.23       |
| 8 <sub>#NN</sub>                             | 8.9        | 13.5       |
| 8 <sub>TNA</sub>                             | 13.2       | 20.3       |
| $\mu_{NA}$                                   | 2.3        | 3.3        |

# Summary of the problems

- ext. gauge field boundary values **1** Find the relation between  $(\widehat{A}_{-}, \widehat{A}_{+})$  and  $(A|_{z=-\infty}, A|_{z=+\infty})$ ,
  - s.t. configurations with  $n_B \neq 0$  and  $\hat{A}_{\pm} = 0$  are allowed, and reduces to the standard identification  $(\hat{A}_{-}, \hat{A}_{+}) = (A|_{z=-\infty}, A|_{z=+\infty})$  for the cases without baryons.

#### 2 Find a consistent CS-term

s.t. the chiral anomaly in QCD is reproduced,  $S_{WZW} = \frac{N_c}{\sqrt{3}i} \operatorname{Tr}(t_8 a^{\dagger} \dot{a})$  is reproduced, and reduces to the standard one  $S_{CS} = \frac{N_c}{24\pi^2} \int_{5 \dim} \omega_5(A)$ 

for the cases without baryons.