Institut für Theoretische Physik

ШF

Der Wissenschaftsfonds.

Excited Scalar and Pseudoscalar Mesons in the Extended Linear Sigma Model Denis Parganlija

[Based on D. Parganlija and F. Giacosa, arXiv:1612.09218]

In collaboration with F. Giacosa (Kielce)

Mesons:

Definitions and Experimental Data

- Mesons: hadrons with integer spin
- Quantum numbers: J^{PC}

Total Spin Parity Charge Conjugation

- Scalar mesons: J^{PC} = 0⁺⁺ [σ or f₀(500), a₀(980), a₀(1450)...]
- Pseudoscalar mesons: J^{PC} = 0⁻⁺ [π, K, η, η[´]…]
- Vector mesons: J^{PC} = 1⁻⁻ [ρ, K*, ω, φ(1020)...]
- Axial-Vector mesons: $J^{PC} = 1^{++} [a_1(1260), f_1(1285), K_1(1270), K_1(1400)...]$

Send Feedback

2016 Review of Particle Physics.

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016).

LIGHT UNFLAVORED MESONS

Mini Reviews

The ho(770)Note on Scalar Mesons The $\eta(1405) \, \eta(1475) \, f_1(1420)$ and $f_1(1510)$ The ho(1450) and ho(1700)

Particles

_				
π^{\pm}				
π^0				
η				
$f_0(50)$)0) or	σ was	$f_0(60)$	0)
$\rho(77)$	0)			
$\omega(78$	(2)			
$\eta'(9)$				
$f_0(98)$				
$a_0(98)$	80)			
$\phi(10$	20)			
$h_1(1)$	170)			
$b_1(1)$	235)			

$a_1(1260)$	$f_1(1510)$	$\pi(1800)$	$\pi_2(2100)$
$f_2(1270)$	$f_{2}'(1525)$	$f_2(1810)$	$f_0(2100)$
$f_1(1285)$	$f_2(1565)$	X(1835)	$f_2(2150)$
$\eta(1295)$	$\rho(1570)$	X(1840)	$\rho(2150)$
$\pi(1300)$	$h_1(1595)$	$a_1(1420)$	$\phi(2170)$
$a_2(1320)$	$\pi_1(1600)$	$\phi_3(1850)$	$f_0(2200)$
$f_0(1370)$	$a_1(1640)$	$\eta_2(1870)$	$f_{I}(2220)$
$h_1(1380)$	$f_2(1640)$	$\pi_2(1880)$	$\eta(2225)$
$\pi_1(1400)$	$\eta_2(1645)$	$\rho(1900)$	$\rho_{3}(2250)$
$\eta(1405)$	$\omega(1650)$	$f_2(1910)$	$f_2(2300)$
	$\omega_{3}(1670)$	$a_0(1950)$	$f_4(2300)$
$\omega(1420)$	$\pi_2(1670)$	$f_2(1950)$	$f_0(2330)$
$f_2(1430)$ $a_0(1450)$	$\phi(1680)$	$\rho_{3}(1990)$	$f_2(2340)$
$\rho(1450)$ $\rho(1450)$	$ ho_{3}(1690) ho(1700) $	$f_2(2010)$	$\rho_5(2350)$
$\eta(1475)$	$a_2(1700)$	$f_0(2020)$	$a_6(2450)$
	$f_0(1710)$	$a_4(2040)$	$f_6(2510)$
	$\eta(1760)$	$f_4(2050)$	J6(2010)
VI /	/	141	

Note:

 $J^{P} = 0^{-}$

1) we assume that $\eta(1405)$ and $\eta(1475)$ are one state: $\eta(1440)$ 2) $f_0(1790)$ reported by BES (2004) and LHCb (2014) 3) $a_0(1950)$ reported by BABAR (2015).

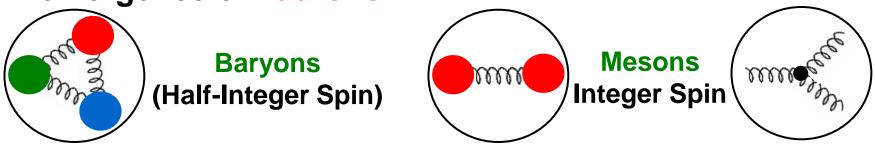
 $J^{P} = 0^{+}$

Are there excited quarkonia here?

Denis Parganlija (Vienna UT) Excited Scalar and Pseudoscalar Mesons in eLSM

particle data group		Send Feedback	<i>J</i> ^{<i>P</i>} = 0 [−]	$J^{P}=0^{+}$
	les, Plots Particle Listings			
2016 Review of Particle Physics. C. Patrignani <i>et al.</i> (Particle Data Group), Chi	n. Phys. C , 40, 1 00001 (2016).			
STRANGE MESONS ($S = \pm 1, C = B = 0$)	$K_{2}(1580)$			
Mini Reviews The Charged Kaon Mass Rare Kaon Decays (rev.) Dalitz Plot Parameters for $K \rightarrow 3 \pi$ Decays K_{l3}^{+-} and K_{l3}^{0} Form Factors Particles K_{l3}^{\pm} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l3}^{0} K_{l410}^{0} K_{2}^{0} (1430) K_{2}^{0} (1430)	$\begin{array}{l} K_1(1630)\\ K_1(1650)\\ K_1(1650)\\ K_2(1770)\\ K_3^*(1780)\\ K_2(1820)\\ K_2(1820)\\ K(1830)\\ K_2(1950)\\ K_2^*(1980)\\ K_2^*(1980)\\ K_4^*(2045)\\ K_2(2250)\\ K_3(2320)\\ K_5^*(2380)\\ K_4(2500)\\ K_4(2500)\\ K(3100)\\ \end{array}$		Are there e quarkonia	

Quantum Chromodynamics


QCD Lagrangian:

$$\mathcal{L} = \overline{q}_f (i\gamma^{\mu} D_{\mu} - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

$$D_{\mu} = \partial_{\mu} - igA^a_{\mu} t^a \qquad G^a_{\mu\nu} = \partial_{\mu} A^a_{\nu} - \partial_{\nu} A^a_{\mu} + gf^{abc} A^b_{\mu} A^c_{\nu}$$
Strong Coupling is

Energy-Dependent

Large coupling and confinement lead to the emergence of hadrons

But: perturbative expansion does not work

Two approaches to Low-Energy QCD

Quarks/gluons as degrees of freedom:

Lattice

[Wilson; Alexandrou, Bicudo, Cardoiso, Dürr, Fodor, Gregory, Irving, Katz, Lang, Prelovsek, Silva, Suganuma...]

Light-front wave functions

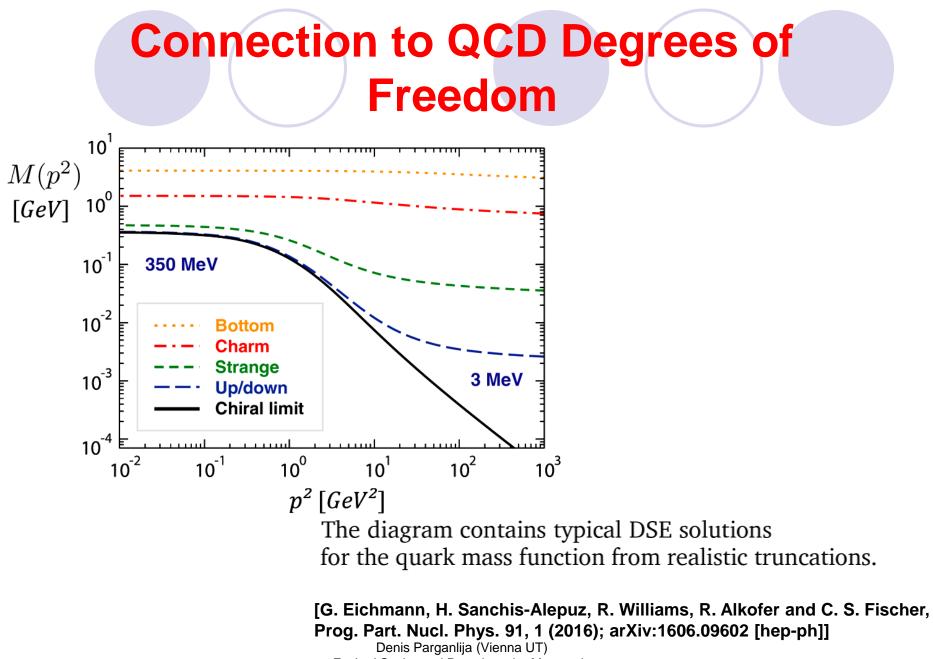
[Brodsky, Pauli, Pinsky, Teramond, ...]

Bethe-Salpeter Equations

[Eichmann, Fischer, Nicmorus, Roberts, Williams, Windisch,...]

Hadrons as degrees of freedom: Chiral Perturbation Theory Linear Sigma Model

Can a Model Ever Describe QCD?

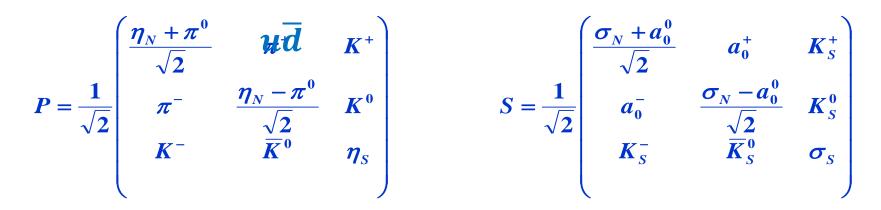

• Symmetries of the QCD Lagrangian: Poincare; Local $SU(3)_c$ Colour; Global Chiral $U(N_f) \times U(N_f)$; Dilatational;

CPT;
$$Z_n (n = 0, ..., N_c - 1)$$

can all be implemented

- Degrees of freedom: quantum numbers *I*, *J*, *P*, *C* are contained – as observed by experiment and calculated in first-principles approaches
- Suitable for dynamics
 → can test structure of observed particles
- Historical success: a simple chiral model predicted the sigma meson a decade before first experimental hints

Denis Parganlija (Vienna UT) Excited Scalar and Pseudoscalar Mesons in eLSM


Excited Scalar and Pseudoscalar Mesons in

Mesons

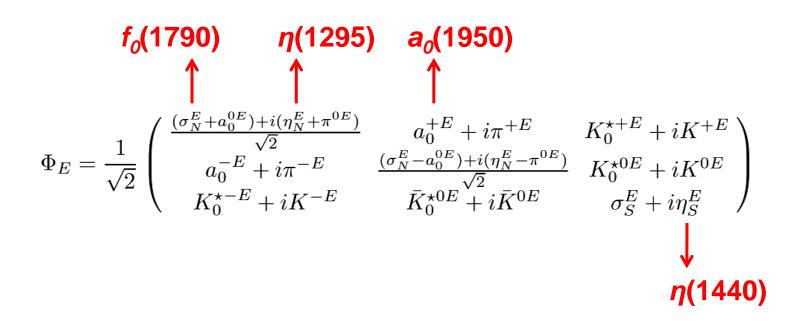
$$\sqrt{2}\bar{q}_{j,R}q_{i,L} = \sqrt{2}\bar{q}_{j}\mathcal{P}_{L}\mathcal{P}_{L}q_{i} \qquad \mathcal{P}_{L} = \frac{1-\gamma_{5}}{2}$$

$$= \frac{1}{\sqrt{2}}\left(\bar{q}_{j}q_{i} - \bar{q}_{j}\gamma^{5}q_{i}\right) = \frac{1}{\sqrt{2}}\left(\bar{q}_{j}q_{i} + i\bar{q}_{j}i\gamma^{5}q_{i}\right)$$

scalar pseudoscalar

Denis Parganlija (Vienna UT) Excited Scalar and Pseudoscalar Mesons in eLSM

Linear Sigma Model


 $\Phi = S + \mathbf{i}P \qquad L_{\mu} = V_{\mu} + A_{\mu} \qquad R_{\mu} = V_{\mu} - A_{\mu}$ $\mathcal{L} = \operatorname{Tr} \left[(D^{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) \right] - m_0^2 \operatorname{Tr} (\Phi^{\dagger} \Phi) - \lambda_1 \left[\operatorname{Tr} (\Phi^{\dagger} \Phi) \right]^2 - \lambda_2 \operatorname{Tr} (\Phi^{\dagger} \Phi)^2$ + Tr [$H(\Phi + \Phi^{\dagger})$] + c[(det $\Phi + \det \Phi^{\dagger})^2 - 4\det(\Phi \Phi^{\dagger})$] $-\frac{1}{4} \operatorname{Tr} \left(L_{\mu\nu}^{2} + R_{\mu\nu}^{2} \right) + \operatorname{Tr} \left[\left(\frac{m_{1}^{2}}{2} + \Delta \right) \left(L_{\mu}^{2} + R_{\mu}^{2} \right) \right]$ $-2ig_{2}(\mathrm{Tr}\{L_{\mu\nu}[L^{\mu},L^{\nu}]\}+\mathrm{Tr}\{R_{\mu\nu}[R^{\mu},R^{\nu}]\})$ + $\frac{h_1}{2}$ Tr $(\Phi^{\dagger}\Phi)$ Tr $(L_{\mu}^2 + R_{\mu}^2) + h_2$ Tr $[(L_{\mu}\Phi)^2 + (\Phi R_{\mu})^2]$ + $2h_3 \operatorname{Tr} (\Phi R_{\mu} \Phi^{\dagger} L^{\mu})$ **Explicit Symmetry** Breaking $D_{\mu}\Phi = \partial_{\mu}\Phi + ig_{1}(\Phi R_{\mu} - L_{\mu}\Phi)$ **Chiral Anomaly** $L_{\mu\nu} = \partial_{\mu}L_{\nu} - \partial_{\nu}L_{\mu}$ Ground states! Denis Parganlija (Vienna UT) Excited Scalar and Pseudoscalar Mesons in $R_{\mu\nu} = \partial_{\mu}R_{\nu} - \partial_{\nu}R_{\mu}$ eLSM

The Point of Our Study

Consider two hypotheses:
 i) f₀(1790) and a₀(1950) are excited scalar quarkonia
 ii) pseudoscalars above 1 GeV are excited scalar quarkonia

The study is performed by adding a scalar and a pseudoscalar nonet of excited states to the ground-state model

Content of Excited States

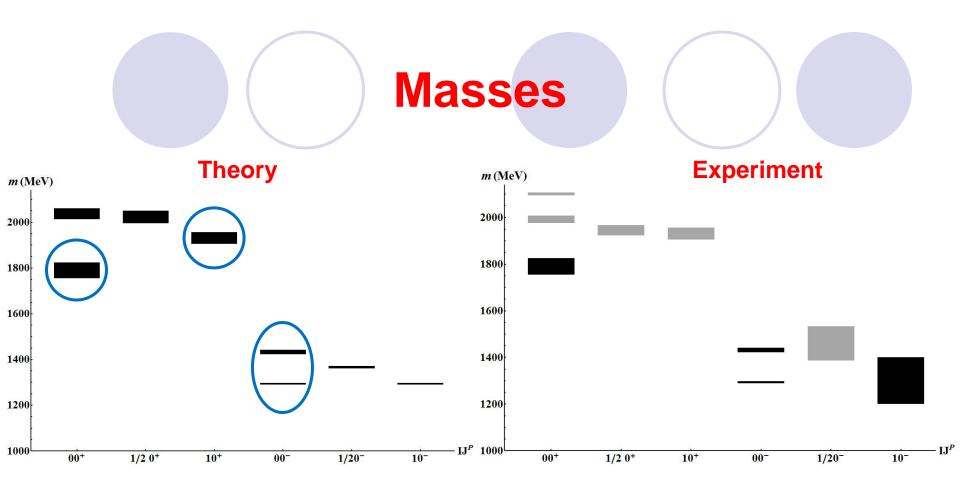
The Model for the Excited States

 $\mathcal{L}_E = \operatorname{Tr}[(D_\mu \Phi_E)^{\dagger} (D_\mu \Phi_E)] + \alpha \operatorname{Tr}[(D_\mu \Phi_E)^{\dagger} (D_\mu \Phi) + (D_\mu \Phi)^{\dagger} (D_\mu \Phi_E)] - (m_0^*)^2 \left(\frac{G}{G_0}\right)^2 \operatorname{Tr}(\Phi_E^{\dagger} \Phi_E)$

$$-\lambda_0 \left(\frac{G}{G_0}\right)^2 \operatorname{Tr}(\Phi_E^{\dagger} \Phi + \Phi^{\dagger} \Phi_E) - \lambda_1^* \operatorname{Tr}(\Phi_E^{\dagger} \Phi_E) \operatorname{Tr}(\Phi^{\dagger} \Phi) - \lambda_2^* \operatorname{Tr}(\Phi_E^{\dagger} \Phi_E \Phi^{\dagger} \Phi + \Phi_E \Phi_E^{\dagger} \Phi \Phi^{\dagger})$$

 $-\kappa_1 \operatorname{Tr}(\Phi_E^{\dagger}\Phi + \Phi^{\dagger}\Phi_E) \operatorname{Tr}(\Phi^{\dagger}\Phi) - \kappa_2 [\operatorname{Tr}(\Phi_E^{\dagger}\Phi + \Phi^{\dagger}\Phi_E)]^2 - \kappa_3 \operatorname{Tr}(\Phi_E^{\dagger}\Phi + \Phi^{\dagger}\Phi_E) \operatorname{Tr}(\Phi_E^{\dagger}\Phi_E) - \kappa_4 [\operatorname{Tr}(\Phi_E^{\dagger}\Phi_E)]^2$

$$\xi_1 \operatorname{Tr}(\Phi_E^{\dagger} \Phi \Phi^{\dagger} \Phi + \Phi_E \Phi^{\dagger} \Phi \Phi^{\dagger}) - \xi_2 \operatorname{Tr}(\Phi_E^{\dagger} \Phi \Phi_E^{\dagger} \Phi + \Phi^{\dagger} \Phi_E \Phi^{\dagger} \Phi_E) - \xi_3 \operatorname{Tr}(\Phi^{\dagger} \Phi_E \Phi_E^{\dagger} \Phi_E + \Phi \Phi_E^{\dagger} \Phi_E \Phi_E^{\dagger}) - \xi_4 \operatorname{Tr}(\Phi_E^{\dagger} \Phi_E)^2 + \operatorname{Tr}(\Phi_E^{\dagger} \Phi_E E_1 + \Phi_E \Phi_E^{\dagger} E_1) + c_1^* [(\det \Phi - \det \Phi_E^{\dagger})^2 + (\det \Phi^{\dagger} - \det \Phi_E)^2] + c_{1E}^* (\det \Phi_E - \det \Phi_E^{\dagger})^2$$


$$+\frac{h_{1}^{*}}{2}\operatorname{Tr}(\Phi_{E}^{\dagger}\Phi+\Phi^{\dagger}\Phi_{E})\operatorname{Tr}(L_{\mu}^{2}+R_{\mu}^{2})+\frac{h_{1E}^{*}}{2}\operatorname{Tr}(\Phi_{E}^{\dagger}\Phi_{E})\operatorname{Tr}(L_{\mu}^{2}+R_{\mu}^{2})$$

 $+ h_{2}^{*} \operatorname{Tr}(\Phi_{E}^{\dagger} L_{\mu} L^{\mu} \Phi + \Phi^{\dagger} L_{\mu} L^{\mu} \Phi_{E} + R_{\mu} \Phi_{E}^{\dagger} \Phi R^{\mu} + R_{\mu} \Phi^{\dagger} \Phi_{E} R^{\mu}) + h_{2E}^{*} \operatorname{Tr}[|L_{\mu} \Phi_{E}|^{2} + |\Phi_{E} R_{\mu}|^{2}]$

 $+2h_3^*\operatorname{Tr}(L_{\mu}\Phi_E R^{\mu}\Phi^{\dagger}+L_{\mu}\Phi R^{\mu}\Phi_E^{\dagger})+2h_{3E}^*\operatorname{Tr}(L_{\mu}\Phi_E R^{\mu}\Phi_E^{\dagger}).$

No mixing among excited states

- No mixing of excited states with ground states
- Discard large-N_c suppressed terms
- Then masses are determined by 4 parameters and more than 35 decays by 2 parameters

Encircled blue: input masses Shaded areas: unconfirmed states

Results

Model state	IJ^P	Mass (MeV)	Decay	Width (MeV)	Note
σ^E_N	00+	$1790 \pm 35^{*}$	$ \begin{array}{c} \sigma_{N}^{E} \rightarrow \pi\pi \\ \hline \sigma_{N}^{E} \rightarrow KK \\ \hline \sigma_{N}^{E} \rightarrow a_{1}(1260)\pi \\ \hline \sigma_{N}^{E} \rightarrow \eta\eta' \\ \hline \sigma_{N}^{E} \rightarrow \eta\eta \\ \hline \sigma_{N}^{E} \rightarrow f_{1}(1285)\eta \\ \hline \sigma_{N}^{E} \rightarrow K_{1}K \\ \hline \sigma_{N}^{E} \rightarrow \sigma_{N}\pi\pi \\ \hline \text{Total} \end{array} $	$ \begin{array}{r} 270 \pm 45^{*} \\ 70 \pm 40^{*} \\ 47 \pm 8 \\ 10 \pm 2 \\ 7 \pm 1 \\ 1 \pm 0 \\ 0 \\ 405 \pm 96 \end{array} $	Assigned to $f_0(1790)$; mass, $\pi\pi$ and KK decay widths fixed to BES II data [127]. Other decays not (yet) measured.
a_0^E	10+	$1931\pm26^{*}$	$\begin{array}{c} a_0^E \rightarrow \eta \pi \\ \hline a_0^E \rightarrow KK \\ \hline a_0^E \rightarrow \eta' \pi \\ \hline a_0^E \rightarrow f_1(1285) \pi \\ \hline a_0^E \rightarrow K_1 K \\ \hline a_0^E \rightarrow a_1(1260) \eta \\ \hline a_0^E \rightarrow a_0(1450) \pi \pi \\ \hline \text{Total} \end{array}$	$ \begin{array}{r} 94 \pm 16 \\ \overline{94 \pm 54} \\ \overline{48 \pm 8} \\ \overline{28 \pm 5} \\ \overline{9 \pm 5} \\ \overline{6 \pm 1} \\ 1 \pm 1 \\ \overline{280 \pm 90} \end{array} $	Candidate state: $a_0(1950)$ recently measured by BABAR; $m_{a_0(1950)} = (1931 \pm 26)$ MeV and $\Gamma_{a_0(1950)} = (271 \pm 40)$ MeV [183]. Requires confirmation [5].
η^E_N	00^{-}	$1294 \pm 4^*$	$\eta^E_N \to \eta \pi \pi + \eta' \pi \pi + \pi K K$	7 ± 3	Assigned to $\eta(1295)$; PDG mass [5].
η^E_S	00-	$1432 \pm 10^{*}$	$\frac{\eta_S^E \to K^* K}{\eta_S^E \to K K \pi}$ $\frac{\eta_S^E \to \eta \pi \pi \text{ and } \eta' \pi \pi}{\text{Total}}$	$\frac{\frac{128^{+204}_{-128}}{28^{+41}_{-28}}}{\frac{128^{+41}_{-28}}{156^{+245}_{-156}}}$	Assigned to $\eta(1440)$; mass from BES data [191, 192]. Full width ~ 100 MeV at this mass [192]. $\Gamma_{\eta(1440) \rightarrow \eta \pi \pi}$ suppressed [192].

Denis Parganlija (Vienna UT) Excited Scalar and Pseudoscalar Mesons in eLSM

[See 1612.09218 for more details]

Results

		-			
σ^E_S	00+	2038 ± 24	$ \begin{array}{c} \sigma_{S}^{E} \rightarrow KK \\ \hline \sigma_{S}^{E} \rightarrow \eta \eta' \\ \hline \sigma_{S}^{E} \rightarrow \eta \eta \\ \hline \sigma_{S}^{E} \rightarrow K_{1}K \\ \hline \sigma_{S}^{E} \rightarrow K_{1}K \\ \hline \sigma_{S}^{E} \rightarrow \pi \eta' \eta' \\ \hline \sigma_{S}^{E} \rightarrow \pi \pi, \ \rho \rho \ \text{and} \ \omega \omega \\ \hline \sigma_{S}^{E} \rightarrow a_{1}(1260)\pi \ \text{and} \ f_{1}(1285)\eta \\ \hline \sigma_{S}^{E} \rightarrow \pi^{E}\pi \ \text{and} \ \eta_{N}^{E}\eta \\ \hline \sigma_{S}^{E} \rightarrow \sigma_{S}\pi\pi \\ \hline \hline \text{Total} \end{array} $	$\begin{array}{r} 24^{+46}_{-24} \\ \hline 16 \pm 3 \\ \hline 7 \pm 1 \\ \hline 4^{+8}_{-4} \\ \hline 1 \pm 0 \\ \hline suppressed \\ \hline suppressed \\ \hline suppressed \\ \hline suppressed \\ \hline 52^{+58}_{-32} \\ \hline \end{array}$	Candidate states: $f_0(2020)$; $m_{f_0(2020)} = (1992 \pm 16) \text{ MeV}$ and $\Gamma_{f_0(2020)} = (442 \pm 60) \text{ MeV}$ and $f_0(2100)$; $m_{f_0(2100)} = (2101 \pm 7) \text{ MeV}$ and $\Gamma_{f_0(2101)} = 224^{+23}_{-21} \text{ MeV}.$ Both require confirmation [5].
$K_0^{\star E}$	$\frac{1}{2}0^+$	2023 ± 27	$ \begin{array}{c} K_0^{\star E} \to \eta' K \\ \hline K_0^{\star E} \to K \pi \\ \hline K_0^{\star E} \to K_1 \pi \\ \hline K_0^{\star E} \to a_1(1260) K \\ \hline K_0^{\star E} \to \eta K \\ \hline K_0^{\star E} \to f_1(1285) K \\ \hline K_0^{\star E} \to K_1 \eta \\ \hline K_0^{\star E} \to K_0^{\star}(1430) \pi \pi \\ \hline \text{Total} \end{array} $	$\begin{array}{rrrr} 72 \pm 12 \\ \hline 66 \pm 46 \\ \hline 10 \pm 7 \\ \hline 6 \pm 4 \\ \hline 6^{+9} \\ \hline 2 \pm 1 \\ \hline 0 \\ \hline 0 \\ \hline 162^{+79}_{-76} \\ \hline \end{array}$	Candidate state: $K_0^{\star}(1950);$ $m_{K_0^{\star}(1950)} = (1945 \pm 22)$ MeV and $\Gamma_{K_0^{\star}(1950)} = (201 \pm 90)$ MeV. Requires confirmation [5].
π^E	10-	1294 ± 4	-	-	Width badly defined due to large errors of the experimental input data.
K^E	$\frac{1}{2}0^{-}$	1366 ± 6	-	-	Width badly defined due to large errors of the experimental input data.

Denis Parganlija (Vienna UT) Excited Scalar and Pseudoscalar Mesons in eLSM

[See 1612.09218 for more details]

Enforcing Excited Pseudoscalars as Quarkonia

Model state	IJ^P	Mass (MeV)	Decay	Width (MeV)	Note
η_N^E	00^{-}	1294 ± 4	$\eta_N^E \to \eta \pi \pi + \eta' \pi \pi + \pi K K$	$55 \pm 5^{*}$	Assigned to $\eta(1295)$; PDG mass [5].
η_S^E	00-	1432 ± 10	$ \begin{array}{c} \frac{\eta_S^E \to K^{\star} K}{\eta_S^E \to K K \pi} \\ \hline \frac{\eta_S^E \to \eta \pi \pi \text{ and } \eta' \pi \pi}{\text{Total}} \end{array} $	$ \frac{26 \pm 3^{*}}{3 \pm 0} $ $ \frac{3 \pm 0}{\text{suppressed}} $ $ \frac{29 \pm 3}{3} $	Assigned to $\eta(1440)$; mass and $K^{\star}K$ width from Refs. [191, 192]. Our estimate for $\Delta\Gamma_{\eta(1440)\rightarrow K^{\star}K}$.
π^E	10-	1294 ± 4	$\frac{\begin{array}{c} \pi^E \to \rho \pi \\ \hline \pi^E \to 3 \pi \\ \hline \hline \pi^E \to K K \pi \\ \hline \hline \text{Total} \end{array}$	$ \frac{368 \pm 37}{204 \pm 15} \\ \hline \frac{2 \pm 0}{574 \pm 52} $	Assigned to $\pi(1300)$; degenerate in mass with $\eta(1295)$ according to Eq. (32). Compares well with $\Gamma_{\pi(1300)} = (200 - 600)$ MeV [5].
K^E	$\frac{1}{2}0^{-}$	1366 ± 6	$ \begin{array}{c} \frac{K^E \to K^{\star}\pi}{K^E \to K\pi\pi} \\ \hline K^E \to \rho K \\ \hline K^E \to \omega K \\ \hline K^E \to K\pi\eta \\ \hline Total \end{array} $	$ \begin{array}{r} 112 \pm 11 \\ \overline{35 \pm 4} \\ \overline{20 \pm 2} \\ \overline{7 \pm 1} \\ \overline{0} \\ \overline{174 \pm 18} \end{array} $	Assigned to $K(1460)$; $m_{K(1460)} \sim 1460 \text{ Me}^{-1}$ $\Gamma_{K(1460)} \sim 260 \text{ MeV}$ [5].
All scalars	-			Calculated via Eqs. (39), (41), (43), (45) and Eq. (53).	Unobservable due to extremely large decays into vectors $[O(1 \text{ GeV})]$.

[See 1612.09218 for more details]

Home pdgLive Summary Tables Reviews, Tal pdgLive Home > LIGHT UNFLAVORED MESONS 2016 Review of Particle Physics. C. Patrignani <i>et al.</i> (Particle Data Group), Ch	oles, Plots Particle Listings in. Phys. C, 40 , 100001 (2016	Send Feedback	
LIGHT UNFLAVORED MESONS Mini Reviews The $\rho(770)$ Note on Scalar Mesons The $\eta(1405) \eta(1475) f_1(1420)$ and $f_1(1510)$ The $\rho(1450)$ and $\rho(1700)$ Particles $\pi^{\pm}_{\pi^0}_{\eta_1}_{f_0}(500)$ or σ was $f_0(600)$ $\rho(770)_{\omega}(782)_{\eta'}(958)_{f_0}(980)_{\eta}_{q_0}(980)_{\eta'}_{q_0}(980)_{\eta'}_{q_0}(120)_{\eta'}_{h_1}(1170)_{h_1}(1235)_{\eta'}$	$\begin{array}{rl} a_1(1260) & f_1(1510) \\ f_2(1270) & f_2'(1525) \\ f_1(1285) & f_2(1565) \\ \eta(1295) & \rho(1570) \\ \pi(1300) & \star \\ a_2(1320) & \pi_1(1600) \\ f_0(1370) & a_1(1640) \\ f_1(1380) & f_2(1640) \\ \pi_1(1400) & \eta_2(1645) \\ \eta(1405) & \omega(1650) \\ f_1(1420) & \omega_3(1670) \\ \omega(1420) & \pi_2(1670) \\ f_2(1430) & \phi(1680) \\ a_0(1450) & \rho_3(1690) \\ \rho(1450) & \rho(1700) \\ \eta(1475) & a_2(1700) \\ f_0(1500) & f_0(1710) \\ f_1(1510) & \eta(1760) \end{array}$	$\begin{array}{c} f_2(1810)\\ X(1835)\\ X(1840)\\ a_1(1420)\\ \phi_3(1850)\\ \eta_2(1870)\\ \pi_2(1880)\\ \rho(1900)\\ f_2(1910)\\ a_0(1950)\\ f_2(1950)\\ \rho_3(1990)\\ f_2(2010)\\ f_0(2020)\\ \end{array}$	Green: ground state (not necessarily quarkonium) Red: excited state one state: η (1440)

particle data group		
Home pdgLive Summary Tables Reviews, Ta	bles, Plots Particle Listings	
pdgLive Home > STRANGE MESONS ($S = \pm 1, C = B = 0$)	
2016 Review of Particle Physics. C. Patrignani <i>et al.</i> (Particle Data Group), Cl	nin. Phys. C, 40 , 100001 (2016).	
STRANGE MESONS ($S = \pm 1, C = B = 0$)		
Mini Reviews	$K_2(1580) \ K(1630)$	
The Charged Kaon Mass	$K_{1}(1050)$	
Rare Kaon Decays (rev.)	$K^*(1680)$	
Dalitz Plot Parameters for $K \to$ 3 π Decays	$K_2(1770)$	
K_{l3}^{+-} and K_{l3}^{0} Form Factors	$K_{3}^{*}(1780)$	
Particles	$\vec{K_2(1820)}$	
K^{\pm}	K(1830)	
$\frac{K}{K^0}$	$K_0^*(1950)$	
K_c^0	$K_{2}^{*}(1980)$	
$egin{array}{c} K^0_S \ K^0_L \ \end{array}$	$K_{4}^{\overline{*}}(2045)$	
$K_0^*(800)$ or κ	$K_2(2250)$	
$K^{*}(892)$	$K_{3}(2320)$	
$K_1(1270)$	$K_{5}^{*}(2380)$	
$K_1(1400)$	$K_4(2500)$	
$rac{K^*(1410)}{K_0^*(1430)}$	K(3100)	
$\frac{K_0(1430)}{K_0^*(1430)}$		
<u>K(1460)</u> *		

Green: ground state (not necessarily quarkonium) Red: excited state one state: η(1440)

Conclusion

- Excited scalar and pseudoscalar mesons have been investigated in the Extended Linear Sigma Model
- The model also contains ground-state (pseudo)scalars and (axial-)vectors
- The main goal was to test whether f₀(1790) and the recently observed a₀(1950) can be interpreted as excited scalar mesons
- The answer is positive but there appears to be tension with the simultaneous interpretation of pseudoscalars above 1 GeV as excited states
- The study has predicted more than 35 decays all of them measurable by BABAR, BES, LHCb and PANDA