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Important properties of QCD

There are two important properties of QCD that are decisive for
determining its observable particle spectrum:
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Important properties of QCD

There are two important properties of QCD that are decisive for
determining its observable particle spectrum:

» confinement
» chiral symmetry breaking
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Gribov problem

» Gribov' showed that the Faddeev-Popov construction is not valid
at the non-perturbative level.

Gauge Orbit

V. N. Gribov, Nucl. Phys. B 139 (1978) 1.



Gribov problem

Consequently, Gribov copies imply that:
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Gribov problem

Consequently, Gribov copies imply that:

» we are overcounting equivalent gauge configurations, since we
have more than one configuration for each gauge orbit,

» the Faddeev-Popov measure is ill-defined, since there are
zero-modes of the Faddeev-Popov operator when considering
the infinitesimal copies (det M = 0).

Caroline Felix | The Topological Susceptibility via the Gribov horizon?



Gribov region

Q={A% 9,A2 =0, M®A)=-0,DP(A)>0}. (1)

W

2G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333.



Gribov region

Q={A% 9,A2 =0, M®A)=-0,DP(A)>0}. (1)

» Landau gauge, 0,A% =0,
» Hermitian Faddeev-Popov operator,

Mab(A) _ _5ab02 =+ gfabC(A)Zauv (2)

is positive. Inside the Gribov region, there are no infinitesimal
copies, since M3 (A) > 0;
» it is convex, bounded and intersected by each gauge orbit?

» lts boundary, 99, is called the first Gribov horizon and there, the
first null eigenvalue of M3 (A) (i.e. the first zero-mode of
Faddeev-Popov operator) appears.

2G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333.



RGZ action

S = Sym + Srp + Sraz + Sr. 3)
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RGZ action

S = Sym+ Srp + Sgaz + S-, 3)
whereby
S — / d*x 72, (A1) (4)

implements, through the Lagrange multiplier r, the transversality of
the composite operator (A")3, 9,,(A")a = 0; Sy is the Yang-Mills
action,
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RGZ action

S = Sym+ Srp + Sgaz + S-, ()
whereby
S — / d*x 720,(A")? (@)
implements, through the Lagrange multiplier r, the transversality of

the composite operator (A")3, 9,,(A")a = 0; Sy is the Yang-Mills
action,

1
Swi= 3 [ INFLFL, 5)

Skp is the Landau gauge Faddeev-Popov action,

Sep = / d*x (ib? 0, A2 + ¢20,D3(A)cP) , (6)
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RGZ action

The RGZ (Refined Gribov-Zwanziger) action is 3 4

3D. Dudal, S. P. Sorella, N.Vandersickel and H. Verschelde, Phys. Rev. D 77 (2008) 071501.

4D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Phys. Rev. D 78 (2008) 065047.

5D. Dudal, S. P. Sorella and N. Vandersickel, Phys. Rev. D 84 (2011) 065039.
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RGZ action

The RGZ (Refined Gribov-Zwanziger) action is 3 4
Srez = /d4x [gbff&, begozc - @5"8,,(05"&)2") - g((?y@z")fabCDSmCmapZ”]

—’yzg/d4X [fabcAz(pzc+fabCAz@Zc+S(N§_1)72

2
m 4
apa 2 4., (=ab, ab —ab, .ab
+o [ XA M [ (B — ). (7)
3D. Dudal, S. P. Sorella, N.Vandersickel and H. Verschelde, Phys. Rev. D 77 (2008) 071501.
4D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Phys. Rev. D 78 (2008) 065047.
5

D. Dudal, S. P. Sorella and N. Vandersickel, Phys. Rev. D 84 (2011) 065039.
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The local gauge invariance of A”

The configuration AZ is a non-local power series in the gauge field,
obtained by minimizing the functional fa[u] along the gauge orbit of
A8 78 with

falu] = minTr/d“xA”LA‘j,
{up . e
A = AU+ éu@uu. 8)
One finds that a local minimum is given by

Oy
Al = <5y,, >¢V., 0uAN =0,

6, = A, —ig {OZaA,AV} g[ 0A. 0,35 ]+O(A3). 9)

6G. Dell’Antonio and D. Zwanziger, Nucl. Phys. B 326 (1989) 333.

7, van Baal, Nucl. Phys. B 369 (1992) 256.

8M. Lavelle and D. McMullan, Phys. Rept. 279 (1997) 1.
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The local gauge invariance of A”

We set :
h h !
4F4Aﬁﬂ:M¢ﬁ%+§m@n (10)

while o
h=ge9<T, (11)
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The local gauge invariance of A”

We set .
h h /
Al = (A")aTa = hTATh + g hto,h, (10)

while ,

h=ged9sT, (11)
The local gauge invariance of AZ under a gauge transformation
u € SU(N) is now immediately clear from

h—suth, h — hiu, A,,ﬁuTA,,,u+éuTa,,,u. (12)
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BRST invariance

The action S enjoys an exact nilpotent BRST invariance, sS = 0, if
we assign the following BRST transformation rules to all fields,

SA? = —D¥cP, sc?= gfabccbcc.,
sc? = ib?, sb?=0.
shi = —igca(Ta)"n
Sg&ﬁb = 0, Swﬁb =0,
so® = 0, sp?=0,
st — 0. (13)
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Gluon propagator

PPy

Dyv(p) = D(P) P (p) + L(p) 02 (14)
with the transverse form factor D(p) (at tree level),
2 4 MZ
D(p) = P (15)

p*+ (M2 + m2)p? + M2m? + A+

containing all non-trivial information, next to
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Gluon propagator

PupPy

Dyv(p) = D(P) P (p) + L(p) 02 (14)
with the transverse form factor D(p) (at tree level),
2 4 MZ
D(p) = : . (15)

p* + (M2 + m2)p2 + M2m?2 + \*

containing all non-trivial information, next to

(0%
with
P..(p)=14¢ PuPy L _ PuPv 17
j% p)* (22 pz ’ MV(p)* ,02 ( )

the transversal and longitudinal projectors.
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Topological charge density

In Euclidean space-time, we have the classical instanton solutions,
describing in Minkowski space-time the tunneling between the
degenerate vacuum states with different Chern-Simons charge®,

X:/dSXKO, (18)

with Ky the temporal component of topological Chern-Simons current,

9D. E. Kharzeey, Int. J. Mod. Phys. A 31 (2016) no.28n29, 1645023.
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Topological charge density

In Euclidean space-time, we have the classical instanton solutions,
describing in Minkowski space-time the tunneling between the
degenerate vacuum states with different Chern-Simons charge®,

X:/dSXKO, (18)

with Ky the temporal component of topological Chern-Simons current,

92

w o= 1672 €uvpo

Ava (0747 + TFALAT) . (19)

9D. E. Kharzeey, Int. J. Mod. Phys. A 31 (2016) no.28n29, 1645023.
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Topological charge density

In Euclidean space-time, we have the classical instanton solutions,
describing in Minkowski space-time the tunneling between the
degenerate vacuum states with different Chern-Simons charge®,

X:/dSXKO, (18)

with Ky the temporal component of topological Chern-Simons current,

9° va, 9 -
Ki = 525 €uprPua <8PA ay 5fabCAgAc) . (19)

This current is related to the topological charge density,

Q(x) = 9,K, = Sgw FoEo (20)

9D. E. Kharzeey, Int. J. Mod. Phys. A 31 (2016) no.28n29, 1645023.
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Veneziano ghost

Witten and Veneziano suggested that the vacuum topology
fluctuations can be captured by the occurrence of an unphysical mass
pole'® ' the Veneziano ghost, in the topological current correlator

10

" G. Veneziano, Nucl. Phys. B 159 (1979) 213.
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Veneziano ghost

Witten and Veneziano suggested that the vacuum topology
fluctuations can be captured by the occurrence of an unphysical mass
pole'® ' the Veneziano ghost, in the topological current correlator

pupl/ <KMKV>p:0 7é 0. (21)

10

" G. Veneziano, Nucl. Phys. B 159 (1979) 213.
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Veneziano ghost

Witten and Veneziano suggested that the vacuum topology
fluctuations can be captured by the occurrence of an unphysical mass
pole'® ' the Veneziano ghost, in the topological current correlator

PPy (K.Ky),—o # 0. (21)
Thus, the Veneziano solution was to assume that

) 2 4
Ko (p) =i / a*x eP (K,(x)K, (0)) P=° _%g,“,, (22)

where xy* > 0 is the topological susceptibility of pure Yang-Mills
theory.

10

" G. Veneziano, Nucl. Phys. B 159 (1979) 213.
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The “glost” of Kharzeev-Levin

An effective ghost-gluon vertex I',(g, p) was postulated, and then it
was found that a dynamically corrected gluon propagator (the “glost”),
2
2 P
Guw(p®) = Wéuw (23)
solves the Dyson-Schwinger equation, when using only this
coupling'® 13 in the deep infrared. Immediately, we notice that there is
an inconsistency between (14) and (23), indicating that the
propagator (23) is incompatible with BRST symmetry.

12D. E. Kharzeev and E. M. Levin, Phys. Rev. Lett. 114 (2015) 24, 242001.

13D. Dudal and M. S. Guimaraes, Phys. Rev. D 93 (2016) no.8, 085010.
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Topological susceptibility y*

The topological susceptibility xy* can be written as
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Topological susceptibility y*

The topological susceptibility xy* can be written as

X4 = — lim PPy <KuKu> > 0. (24)
p2—0
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Kallén-Lehmann spectral density and y*

Let us show this also removes any ambiguity imposed by the
subtraction procedure. We may in general set

PupPv PPy
(5;“1 — }T> /CJ_(P2) + ?KH(PZ)

o pppu /oo pPL (T) pupu /OO d Pl (T) 2
= W= , (25
( ' ) i e S T ®

based on Euclidean invariance. Then, we already find that

(Ku(p)K. (—p))

Q) = Ky () =~ [ P > (26)

and thus

— X4 = lim p ICH
p2—0

(27)
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Kallén-Lehmann spectral density and y*

From dimensional analysis, it is clear that this time we only need 2
subtractions (p|(7) ~ 7 for 7 — o0), so a finite result is guaranteed

from
()

e

/C”(,Dz) = by + b1,02 +p4 / ar
J0

and thus

T > 4 [~ p(7)
—plggop (bo+b1p +p/0 dT(sz)Tz)q, (29)

with by 1 subtraction constants. Obviously, we can rewrite (29) as

- G
=g [ @
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The spectral density associated with the Kall

Lehmann representation

We temporarily rewrite the RGZ gluon propagator as

p2 + M2
D(p?) = o —— 31
we obtain
(d—1)/2
- gH (N> —1) (2 —4b° —dar)
pH(T) - *2A+A_ 22d+57r7/2|_(%) Td/2 (32)

forr > 7. =2(a+ va? + b?), where

In MOM scheme:
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9%(x) in MOM scheme

The proper renormalization factor Z is thus given by, at scale y,

2 2
+ M
D)=z P T 35
with 4 2,2 4
M M
7 — 1 M (36)
PR pP MR
The gluon propagator we will use is to be renormalized in MOM
scheme at scale 1, so the g2 present becomes
1 11 N
g (n) Bo = (37)

3 1672°

oies ()

We use A2 ~ 628 MeV and ANS2 ~ 425 MeV 4.

14P. Boucaud, F. De Soto, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene, J. Rodriguez-Quintero, Phys. Rev. D79 (2009) 014508.

Caroline Felix | The Topological Susceptibility via the Gribov horizon?



Padé approximation

» At the to be considered scales p, relative to the MOM scale, after
which we “extrapolate” to the deep infrared using the described
Padé analysis.

» We approximated (30) with the [3,1] Padé rational function in
variable p?.

» We opted to do the Padé approximation around p? = P2.
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The spectral density in MOM scheme in SU

For N = 3, the spectral density thence reads

3/2
g4(,u)22 (72 —4p? — 4a7) (38)
294 2 :

[)H(T) = 72A+A_

Using the lattice obtained values M2 = 4.473 GeV?;
M2 = 0.704 GeV?; M4 = 0.3959 GeV* '5,we get

a=0352GeV?, b=0522GeV?, 2A,A_=31.719. (39)

15O. Oliveira and P. J. Silva, Phys. Rev. D 86 (2012) 114513.

Caroline Felix | The Topological Susceptibility via the Gribov horizon?



= e f - - - - Pce)

Figure: Topological susceptibility  for variable ;2 and fixed P? = 5 GeV?
(left) and for variable P? and fixed ;2 = 3.230 GeV? (left) 12 (SU(3) case).
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The spectral density in MOM scheme in SU

For N = 2, the spectral density thence reads

3% (1) Z2(n) (72 — 47 — 4ar)*’®

=-—2A, A_
py(7) + o124 2

(40)

Following the same procedure as for N = 3, we get the graphs of
FIG. 2in the N = 2 case. Here, we used M2 = 2.508 GeV?;
M3 = 0.590 GeV?; M = 0.518 GeV* 16, yielding

a=0295GeV?, b=0657GeV?, 2A.A =6.176. (41)

16/—\. Cucchieri, D. Dudal, T. Mendes and N. Vandersickel, Phys. Rev. D 85 (2012) 094513
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The spectral density in MOM scheme in SU( @
Z )

X(MeV)
220
200
180
160
140
120

2,
'&" . - - = e i 4 5 6 7 PGV

Figure: Topological susceptibility  for variable 42 and fixed P? = 5 GeV?
(left) and for variable P? and fixed ;2 = 3.330 GeV? (left) 12 (SU(2) case).
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Conclusion

» In an attempt to get estimates for the topological susceptibility,
we developed a particular Padé rational function approximation
based on the Kallén-Lehmann spectral integral representation of
the topological current correlation function.
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Conclusion

» In an attempt to get estimates for the topological susceptibility,
we developed a particular Padé rational function approximation
based on the Kallén-Lehmann spectral integral representation of
the topological current correlation function.

» We can estimate a range of values for the topological
susceptibility y* qualitatively compatible with lattice data.
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Conclusion

» In an attempt to get estimates for the topological susceptibility,
we developed a particular Padé rational function approximation
based on the Kallén-Lehmann spectral integral representation of
the topological current correlation function.

» We can estimate a range of values for the topological
susceptibility y* qualitatively compatible with lattice data.

» In order to improve upon this crude estimates, we plan to include
the next order correction in future work. Notice this will be
computationally challenging, thanks to the significantly enlarged
set of vertices in the now considered Gribov-Zwanziger action for
the linear covariant gauge.
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