
Relativistic fluid dynamics with spin

Wojciech Florkowski

Institute of Nuclear Physics, Krakow and Jan Kochanowski University, Kielce, Poland

based on recent work with B. Friman, A. Jaiswal, and E. Speranza, arXiv:1705.00587 (nucl-th)

Excited QCD, Sintra, Portugal
May 7 – 13, 2017

Wojciech Florkowski (IFJ PAN) May 7-13, 2017 1 / 15



Introduction & Motivation

Non-central heavy-ion collisions create fireballs with large global angular momenta
which may generate a spin polarization of the hot and dense matter in a way similar
to the Einstein-de Haas and Barnett effects

Much effort has recently been invested in studies of polarization and spin dynamics of
particles produced in high-energy nuclear collisions, both from the experimental and
theoretical point of view

L. Adamczyk et al. (STAR), (2017), arXiv:1701.06657 [nucl-ex], to appear in Nature
Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever
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Local distribution functions

Our starting point is the phase-space distribution functions for spin-1/2 particles and
antiparticles in local equilibrium. In order to incorporate the spin degrees of freedom, they
have been generalized from scalar functions to two by two spin density matrices for each
value of the space-time position x and momentum p, F. Becattini et al.,
Annals Phys. 338 (2013) 32

f +
rs (x ,p) =

1
2m

ūr (p)X+us(p), f−rs (x ,p) = −
1

2m
v̄s(p)X−vr (p)

Following the notation used by F. Becattini et al., we introduce the matrices

X± = exp
[
±ξ(x) − βµ(x)pµ

]
M±

where

M± = exp
[
±

1
2
ωµν(x)Σ̂µν

]
Here we use the notation βµ = uµ/T and ξ = µ/T , with the temperature T , chemical
potential µ and four velocity uµ. The latter is normalized to u2 = 1. Moreover, ωµν is the
spin tensor, while Σ̂µν is the spin operator expressed in terms of the Dirac gamma matrices,
Σ̂µν = (i/4)[γµ, γν].
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Spin/polarization tensor

ωµν ≡ kµuν − kνuµ + εµνβγuβωγ.

We can assume that both kµ and ωµ are orthogonal to uµ, i.e., k · u = ω · u = 0,

kµ = ωµνuν, ωµ =
1
2
εµναβ ω

ναuβ.

It is convenient to introduce the dual spin tensor

ω̃µν ≡
1
2
εµναβω

αβ = ωµuν − ωνuµ + εµναβkαuβ. (1)

One finds 1
2ωµνω

µν = k · k − ω · ω and 1
2 ω̃µνω

µν = 2k · ω. Using the constraint

k · ω = 0

we find the compact form

M± = cosh(ζ) ±
sinh(ζ)

2ζ
ωµνΣ̂

µν, (2)

where

ζ ≡
1
2

√

k · k − ω · ω. (3)

We now assume also that k · k − ω · ω ≥ 0, which implies that ζ is real.
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Charge current

The charge current [S. de Groot, W. van Leeuwen, and C. van Weert]

Nµ =

∫
d3p

2(2π)3Ep
pµ

[
tr(X+) − tr(X−)

]
= nuµ

where ‘tr’ denotes the trace over spinor indices and n is the charge density

n = 4 cosh(ζ) sinh(ξ) n(0)(T ) = 2 cosh(ζ)
(
eξ − e−ξ

)
n(0)(T )

Here n(0)(T ) = 〈(u · p)〉0 is the number density of spin 0, neutral Boltzmann particles,
obtained using the thermal average

〈· · · 〉0 ≡

∫
d3p

(2π)3Ep
(· · · ) e−β·p ,

where Ep =
√

m2 + p2.
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Energy-momentum tensor tensor

The energy-momentum tensor for a perfect fluid then has the form

Tµν =

∫
d3p

2(2π)3Ep
pµpν

[
tr(X+) + tr(X−)

]
= (ε+ P)uµuν − Pgµν,

where the energy density and pressure are given by

ε = 4 cosh(ζ) cosh(ξ) ε(0)(T )

and

P = 4 cosh(ζ) cosh(ξ) P(0)(T ),

respectively. In analogy to the density n(0)(T ), we define the auxiliary quantities

ε(0)(T ) = 〈(u · p)2
〉0 and P(0)(T ) = −(1/3)〈

[
p · p − (u · p)2

]
〉0.
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Entropy current

The entropy current is given by an obvious generalization of the Boltzmann expression

Sµ = −

∫
d3p

2(2π)3Ep
pµ

(
tr

[
X+(ln X+

− 1)
]

+ tr [X−(ln X− − 1)]
)

This leads to the following entropy density

s = uµSµ =
ε+ P − µn −Ωw

T
,

where Ω is defined through the relation ζ = Ω/T and

w = 4 sinh(ζ) cosh(ξ) n(0).

This suggests that Ω should be used as a thermodynamic variable of the grand canonical
potential, in addition to T and µ. Taking the pressure P to be a function of T , µ and Ω, we
find

s =
∂P
∂T

∣∣∣∣∣
µ,Ω

, n =
∂P
∂µ

∣∣∣∣∣
T ,Ω

, w =
∂P
∂Ω

∣∣∣∣∣
T ,µ
.
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Basic conservation laws

The conservation of energy and momentum requires that

∂µTµν = 0.

This equation can be split into two parts, one longitudinal and the other transverse with
respect to uµ:

∂µ[(ε+ P)uµ] = uµ∂µP ≡
dP
dτ

,

(ε+ P)
duµ

dτ
= (gµα − uµuα)∂αP. (4)

Evaluating the derivative on the left-hand side of the first equation we find

T ∂µ(suµ) + µ∂µ(nuµ) + Ω ∂µ(wuµ) = 0. (5)

The middle term vanishes due to charge conservation,

∂µ(nuµ) = 0. (6)

Thus, in order to have entropy conserved in our system (for the perfect-fluid description we
are aiming at), we demand that

∂µ(wuµ) = 0. (7)

Consequently, we self-consistently arrive at the equation for conservation of entropy,
∂µ(suµ) = 0.

Wojciech Florkowski (IFJ PAN) May 7-13, 2017 8 / 15



Basic conservation laws

In the absence of a net spin polarization, i.e., for ζ = 0, we find the standard expression
for the net charge density n = 4 sinh(ξ) n(0).

On the other hand, one may consider two linear combinations of the form
∂µ [(n ±w)uµ] = 0. Then, we find n ±w = 4 sinh[(µ ±Ω)/T ] n(0), which indicates that
thermodynamic quantities corresponding to charge and spin of the particles couple.

In fact, Ω can be interpreted as a chemical potential related with spin. Interestingly, from
a thermodynamic point of view, a system of particles with spin 1/2 can be seen as a two
component mixture of scalar particles with chemical potentials µ ±Ω.

The scheme defined so far, can be regarded as a minimal extension of the standard
perfect-fluid hydrodynamics of charged particles, where all dynamic equations follow
from the conservation laws. Equations derived above form a closed system of equations,
which facilitates the study of spin dynamics. We may first solve these equations and
subsequently use this solution as the dynamic background for the spin dynamics.
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Spin dynamics

Since we use a symmetric form of the energy-momentum tensor Tµν, the spin tensor Sλ,µν

satisfies the conservation law,

∂λSλ,µν = 0.

For Sλ,µν we use the form taken from the textbook by deGroot,

Sλ,µν =

∫
d3p

2(2π)3Ep
pλ tr

[
(X+
−X−)Σ̂µν

]
=

wuλ

4ζ
ωµν

Using the conservation law for the spin density and introducing the rescaled spin tensor
ω̄µν = ωµν/(2ζ), we obtain

uλ∂λ ω̄µν =
dω̄µν

dτ
= 0,

with the normalization condition ω̄µν ω̄µν = 2.
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Spin dynamics

The tensor ω̄µν can be decomposed in the similar way as the original spin tensor, with the
two rescaled four vectors k̄µ = kµ/(2ζ) and ω̄µ = ωµ/(2ζ), satisfying the constraints

k̄ · u = 0, ω̄ · u = 0, k̄ · ω̄ = 0, k̄ · k̄ − ω̄ · ω̄ = 1,

which leave only four independent components in k̄µ and ω̄µ.

The last condition above is fulfilled by employing the parameterization

k̄µ = mµ sinh(ψ), ω̄µ = nµ cosh(ψ).

The four-vectors mµ and nµ are space-like and normalized to −1,

mµmν = −1, nµnµ = −1.

We thus find two coupled equations

dmµ

dτ
sinh(ψ) + mµ cosh(ψ)

dψ
dτ

+ mνaν sinh(ψ)uµ + εµνβγuνaβnγ cosh(ψ) = 0,

dnµ
dτ

cosh(ψ) + nµ sinh(ψ)
dψ
dτ

+ nνaν cosh(ψ)uµ + εµναβuνaβmα sinh(ψ) = 0, (8)

where aµ = duµ/dτ is the acceleration of the fluid element and dψ
dτ = εµνβγmµuνaβnγ.
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Vortex solution 1

The hydrodynamic flow is defined by the four-vector uµ with the components

u0 = γ, u1 = −γ Ω̃ y , u2 = γ Ω̃ x , u3 = 0,

where Ω̃ is a constant, γ = 1/
√

1 − Ω̃2r2, and r denotes the distance from the center of the
vortex in the transverse plane, r2 = x2 + y2. Due to limiting light speed, the assumed flow
profile may be realised only within a cylinder with the radius R < 1/Ω̃. The total time
(convective) derivative takes the form

d
dτ

= uµ∂µ = −γΩ̃

(
y
∂
∂x
− x

∂
∂y

)
.

Equation (9) can be used to find the fluid acceleration

aµ =
duµ

dτ
= −γ2Ω̃2(0, x , y , 0).

As expected the spatial part of the four-acceleration points towards the centre of the
vortex, as it describes the centripetal acceleration.
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Spin/polarization tensor

It is easy to see that the equations of the hydrodynamic background are satisfied if T , µ
and Ω are proportional to the Lorentz-γ factor

T = T0γ, µ = µ0γ, Ω = Ω0γ,

with T0, µ0 and Ω0 being constants. One possibility is that the vortex represents an
unpolarized fluid with ωµν = 0 and thus, with Ω0 = 0.

Another possibility is that the particles in the fluid are polarized and Ω0 , 0. In the latter
case we expect that the spin tensor has the structure

ωµν =


0 0 0 0
0 0 −Ω̃/T0 0
0 Ω̃/T0 0 0
0 0 0 0

 ,
where the parameter T0 has been introduced to keep ωµν dimensionless. This form yields
kµ = Ω̃2(γ/T0) (0, x , y , 0) and ωµ = Ω̃(γ/T0) (0, 0, 0, 1). As a consequence, we find
ζ = Ω̃/(2T0), which, for consistency with the hydrodynamic background equations, implies

Ω̃ = 2 Ω0.
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Vortex solution 3

It follows that k̄µ = γΩ̃r (0, x/r , y/r , 0) and ω̄µ = γ (0, 0, 0, 1),
leading to mµ = (0, x/r , y/r , 0), nµ = (0, 0, 0, 1),
cosh(ψ) = γ, and sinh(ψ) = γΩ̃r .
With all these quantities determined, it is rather straightforward to show that our
spin-evolution equations are fulfilled.

We observe that dψ/dτ = 0, since the four-vectors mµ and aµ are parallel. We also note
that the spin tensor agrees with the thermal vorticity, namely

$µν = −
1
2

(
∂µβν − ∂νβµ

)
as emphasised in the works by Becattini and collaborators.
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Conclusions and Summary

In this work we have introduced a hydrodynamic framework, which includes the evolution
of the spin density in a consistent fashion. Equations that determine the dynamics of the
system follow solely from conservation laws. Thus, they can be regarded as a minimal
extension of the well established perfect-fluid picture.

Our framework can be used to determine the space-time dynamics of fluid variables,
now including also the spin tensor, from initial conditions defined on an initial space-like
hypersurface. This property makes them useful for practical applications in studies of
polarization evolution in high-energy nuclear collisions and also in other physics systems
exhibiting fluid-like, collective dynamics connected with non-trivial polarization
phenomena. In particular, the possibility to study the dynamics of systems in local
thermodynamic equilibrium represents an important advance compared to studies,
where global equilibrium was assumed.
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