Relativistic fluid dynamics with spin

Wojciech Florkowski

Institute of Nuclear Physics, Krakow and Jan Kochanowski University, Kielce, Poland

based on recent work with B. Friman, A. Jaiswal, and E. Speranza, arXiv:1705.00587 (nucl-th)

Excited QCD, Sintra, Portugal May 7 – 13, 2017

A = > 4

- Non-central heavy-ion collisions create fireballs with large global angular momenta which may generate a spin polarization of the hot and dense matter in a way similar to the Einstein-de Haas and Barnett effects
- Much effort has recently been invested in studies of polarization and spin dynamics of particles produced in high-energy nuclear collisions, both from the experimental and theoretical point of view

L. Adamczyk et al. (STAR), (2017), arXiv:1701.06657 (nucl-ex), to appear in Nature Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid

www.sciencenews.org/article/smashing-gold-ions-creates-most-swirly-fluid-ever

Our starting point is the **phase-space distribution functions for spin-1/2 particles** and antiparticles in local equilibrium. In order to incorporate the spin degrees of freedom, they have been **generalized from scalar functions to two by two spin density matrices** for each value of the space-time position *x* and momentum *p*, **F. Becattini et al.**, **Annals Phys. 338 (2013) 32**

$$f_{rs}^+(x,p) = \frac{1}{2m} \bar{u}_r(p) X^+ u_s(p), \quad f_{rs}^-(x,p) = -\frac{1}{2m} \bar{v}_s(p) X^- v_r(p)$$

Following the notation used by F. Becattini et al., we introduce the matrices

$$X^{\pm} = \exp\left[\pm\xi(x) - \beta_{\mu}(x)p^{\mu}\right]M^{\pm}$$

where

$$M^{\pm} = \exp\left[\pm \frac{1}{2}\omega_{\mu\nu}(x)\hat{\Sigma}^{\mu\nu}\right]$$

Here we use the notation $\beta^{\mu} = u^{\mu}/T$ and $\xi = \mu/T$, with the temperature *T*, chemical potential μ and four velocity u^{μ} . The latter is normalized to $u^2 = 1$. Moreover, $\omega_{\mu\nu}$ is the spin tensor, while $\hat{\Sigma}^{\mu\nu}$ is the spin operator expressed in terms of the Dirac gamma matrices, $\hat{\Sigma}^{\mu\nu} = (i/4)[\gamma^{\mu}, \gamma^{\nu}]$.

< ロ > < 同 > < 回 > < 回 > .

Spin/polarization tensor

$$\omega_{\mu\nu} \equiv k_{\mu} U_{\nu} - k_{\nu} U_{\mu} + \epsilon_{\mu\nu\beta\gamma} U^{\beta} \omega^{\gamma}.$$

We can assume that both k_{μ} and ω_{μ} are orthogonal to u^{μ} , i.e., $k \cdot u = \omega \cdot u = 0$,

$$k_{\mu} = \omega_{\mu\nu} u^{\nu}, \quad \omega_{\mu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} \omega^{\nu\alpha} u^{\beta}.$$

It is convenient to introduce the dual spin tensor

$$\tilde{\omega}_{\mu\nu} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} \omega^{\alpha\beta} = \omega_{\mu} u_{\nu} - \omega_{\nu} u_{\mu} + \epsilon^{\mu\nu\alpha\beta} k_{\alpha} u_{\beta}. \tag{1}$$

One finds $\frac{1}{2}\omega_{\mu\nu}\omega^{\mu\nu} = k \cdot k - \omega \cdot \omega$ and $\frac{1}{2}\tilde{\omega}_{\mu\nu}\omega^{\mu\nu} = 2k \cdot \omega$. Using the constraint $k \cdot \omega = 0$

we find the compact form

$$M^{\pm} = \cosh(\zeta) \pm \frac{\sinh(\zeta)}{2\zeta} \omega_{\mu\nu} \hat{\Sigma}^{\mu\nu}, \qquad (2)$$

where

$$\zeta \equiv \frac{1}{2}\sqrt{k \cdot k - \omega \cdot \omega}.$$
(3)

We now assume also that $k \cdot k - \omega \cdot \omega \ge 0$, which implies that ζ is real.

The charge current (S. de Groot, W. van Leeuwen, and C. van Weert)

$$N^{\mu} = \int \frac{d^{3}p}{2(2\pi)^{3}E_{p}} p^{\mu} \left[tr(X^{+}) - tr(X^{-}) \right] = nu^{\mu}$$

where 'tr' denotes the trace over spinor indices and n is the charge density

$$n = 4 \cosh(\zeta) \sinh(\xi) n_{(0)}(T) = 2 \cosh(\zeta) \left(e^{\xi} - e^{-\xi}\right) n_{(0)}(T)$$

Here $n_{(0)}(T) = \langle (u \cdot p) \rangle_0$ is the number density of spin 0, neutral Boltzmann particles, obtained using the thermal average

$$\langle \cdots \rangle_0 \equiv \int \frac{d^3 p}{(2\pi)^3 E_p} (\cdots) e^{-\beta \cdot p},$$

where $E_p = \sqrt{m^2 + \mathbf{p}^2}$.

The energy-momentum tensor for a perfect fluid then has the form

$$I^{\mu\nu} = \int \frac{d^3\rho}{2(2\pi)^3 E_{\rho}} \rho^{\mu} \rho^{\nu} \left[tr(X^+) + tr(X^-) \right] = (\varepsilon + P) u^{\mu} u^{\nu} - P g^{\mu\nu},$$

where the energy density and pressure are given by

 $\varepsilon = 4 \cosh(\zeta) \cosh(\xi) \varepsilon_{(0)}(T)$

and

 $P = 4 \cosh(\zeta) \cosh(\xi) P_{(0)}(T),$

respectively. In analogy to the density $n_{(0)}(T)$, we define the auxiliary quantities $\varepsilon_{(0)}(T) = \langle (u \cdot p)^2 \rangle_0$ and $P_{(0)}(T) = -(1/3) \langle [p \cdot p - (u \cdot p)^2] \rangle_0$.

The entropy current is given by an obvious generalization of the Boltzmann expression

$$S^{\mu} = -\int \frac{d^{3}p}{2(2\pi)^{3}E_{p}} p^{\mu} \left(\operatorname{tr} \left[X^{+} (\ln X^{+} - 1) \right] + \operatorname{tr} \left[X^{-} (\ln X^{-} - 1) \right] \right)$$

This leads to the following entropy density

$$s = u_{\mu}S^{\mu} = rac{\varepsilon + P - \mu n - \Omega w}{T},$$

where Ω is defined through the relation $\zeta=\Omega/T$ and

$$w = 4 \sinh(\zeta) \cosh(\xi) n_{(0)}.$$

This suggests that Ω should be used as a thermodynamic variable of the grand canonical potential, in addition to T and μ . Taking the pressure P to be a function of T, μ and Ω , we find

$$s = \left. \frac{\partial P}{\partial T} \right|_{\mu,\Omega}, \quad n = \left. \frac{\partial P}{\partial \mu} \right|_{T,\Omega}, \quad w = \left. \frac{\partial P}{\partial \Omega} \right|_{T,\mu}.$$

< □ > < 向

The conservation of energy and momentum requires that

$$\partial_{\mu}T^{\mu\nu}=0.$$

This equation can be split into two parts, one longitudinal and the other transverse with respect to u^{μ} :

$$\partial_{\mu}[(\varepsilon + P)u^{\mu}] = u^{\mu}\partial_{\mu}P \equiv \frac{dP}{d\tau},$$

$$(\varepsilon + P)\frac{du^{\mu}}{d\tau} = (g^{\mu\alpha} - u^{\mu}u^{\alpha})\partial_{\alpha}P.$$
(4)

Evaluating the derivative on the left-hand side of the first equation we find

$$T \partial_{\mu}(su^{\mu}) + \mu \partial_{\mu}(nu^{\mu}) + \Omega \partial_{\mu}(wu^{\mu}) = 0.$$
(5)

The middle term vanishes due to charge conservation,

$$\partial_{\mu}(\mathbf{n}\mathbf{u}^{\mu}) = \mathbf{0}.\tag{6}$$

Thus, in order to have entropy conserved in our system (for the perfect-fluid description we are aiming at), we demand that

$$\partial_{\mu}(wu^{\mu}) = 0. \tag{7}$$

Consequently, we self-consistently arrive at the equation for conservation of entropy, $\partial_{\mu}(su^{\mu}) = 0.$

In the absence of a net spin polarization, i.e., for $\zeta = 0$, we find the standard expression for the net charge density $n = 4 \sinh(\xi) n_{(0)}$.

On the other hand, one may consider two linear combinations of the form $\partial_{\mu}[(n \pm w)u^{\mu}] = 0$. Then, we find $n \pm w = 4 \sinh[(\mu \pm \Omega)/T] n_{(0)}$, which indicates that thermodynamic quantities corresponding to charge and spin of the particles couple.

In fact, Ω can be interpreted as a chemical potential related with spin. Interestingly, from a thermodynamic point of view, a system of particles with spin 1/2 can be seen as a two component mixture of scalar particles with chemical potentials $\mu \pm \Omega$.

The scheme defined so far, can be regarded as a minimal extension of the standard perfect-fluid hydrodynamics of charged particles, where all dynamic equations follow from the conservation laws. Equations derived above form a closed system of equations, which facilitates the study of spin dynamics. We may first solve these equations and subsequently use this solution as the **dynamic background for the spin dynamics**.

・ロン・(型と・) ほと・)

Since we use a symmetric form of the energy-momentum tensor $T^{\mu\nu}$, the spin tensor $S^{\lambda,\mu\nu}$ satisfies the conservation law,

$$\partial_{\lambda} S^{\lambda,\mu\nu} = 0.$$

For $S^{\lambda,\mu\nu}$ we use the form taken from the textbook by deGroot,

$$S^{\lambda,\mu\nu} = \int \frac{d^3\rho}{2(2\pi)^3 E_{\rho}} \rho^{\lambda} \operatorname{tr} \left[(X^+ - X^-) \hat{\Sigma}^{\mu\nu} \right] = \frac{w u^{\lambda}}{4\zeta} \omega^{\mu\nu}$$

Using the conservation law for the spin density and introducing the rescaled spin tensor $\bar{\omega}^{\mu\nu} = \omega^{\mu\nu}/(2\zeta)$, we obtain

$$u^{\lambda}\partial_{\lambda}\,\bar{\omega}^{\mu\nu}=rac{d\bar{\omega}^{\mu
u}}{d au}=0,$$

with the normalization condition $\bar{\omega}_{\mu\nu} \bar{\omega}^{\mu\nu} = 2$.

< ロ > < 同 > < 回 > < 回 >

Spin dynamics

The tensor $\bar{\omega}_{\mu\nu}$ can be decomposed in the similar way as the original spin tensor, with the two rescaled four vectors $\bar{k}_{\mu} = k_{\mu}/(2\zeta)$ and $\bar{\omega}_{\mu} = \omega_{\mu}/(2\zeta)$, satisfying the constraints

$$\bar{k} \cdot u = 0, \ \bar{\omega} \cdot u = 0, \ \bar{k} \cdot \bar{\omega} = 0, \ \bar{k} \cdot \bar{k} - \bar{\omega} \cdot \bar{\omega} = 1,$$

which leave only four independent components in \bar{k}_{μ} and $\bar{\omega}_{\mu}$.

The last condition above is fulfilled by employing the parameterization

 $\bar{k}_{\mu} = m_{\mu} \sinh(\psi), \quad \bar{\omega}_{\mu} = n_{\mu} \cosh(\psi).$

The four-vectors m_{μ} and n_{μ} are space-like and normalized to -1,

$$m_{\mu}m^{\nu} = -1, \quad n_{\mu}n^{\mu} = -1.$$

We thus find two coupled equations

$$\frac{dm_{\mu}}{d\tau}\sinh(\psi) + m_{\mu}\cosh(\psi)\frac{d\psi}{d\tau} + m_{\nu}a^{\nu}\sinh(\psi)u_{\mu} + \epsilon_{\mu\nu\beta\gamma}u^{\nu}a^{\beta}n^{\gamma}\cosh(\psi) = 0,$$

$$\frac{dn_{\mu}}{d\tau}\cosh(\psi) + n_{\mu}\sinh(\psi)\frac{d\psi}{d\tau} + n_{\nu}a^{\nu}\cosh(\psi)u_{\mu} + \epsilon_{\mu\nu\alpha\beta}u^{\nu}a^{\beta}m^{\alpha}\sinh(\psi) = 0, \quad (8)$$

where $a^{\mu} = du^{\mu}/d\tau$ is the acceleration of the fluid element and $\frac{d\psi}{d\tau} = \epsilon_{\mu\nu\beta\gamma}m^{\mu}u^{\nu}a^{\beta}n^{\gamma}$.

The hydrodynamic flow is defined by the four-vector u^{μ} with the components

$$u^0 = \gamma, \quad u^1 = -\gamma \, \tilde{\Omega} \, \gamma, \quad u^2 = \gamma \, \tilde{\Omega} \, x, \quad u^3 = 0,$$

where $\tilde{\Omega}$ is a constant, $\gamma = 1/\sqrt{1 - \tilde{\Omega}^2 r^2}$, and *r* denotes the distance from the center of the vortex in the transverse plane, $r^2 = x^2 + y^2$. Due to limiting light speed, the assumed flow profile may be realised only within a cylinder with the radius $R < 1/\tilde{\Omega}$. The total time (convective) derivative takes the form

$$\frac{d}{d\tau} = u^{\mu}\partial_{\mu} = -\gamma \tilde{\Omega} \left(\gamma \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right).$$

Equation (9) can be used to find the fluid acceleration

$$a^{\mu}=\frac{du^{\mu}}{d\tau}=-\gamma^{2}\tilde{\Omega}^{2}(0,x,y,0).$$

As expected the spatial part of the four-acceleration points towards the centre of the vortex, as it describes the centripetal acceleration.

It is easy to see that the equations of the hydrodynamic background are satisfied if T, μ and Ω are proportional to the Lorentz- γ factor

 $T = T_0 \gamma, \quad \mu = \mu_0 \gamma, \quad \Omega = \Omega_0 \gamma,$

with T_0 , μ_0 and Ω_0 being constants. One possibility is that the vortex represents an unpolarized fluid with $\omega_{\mu\nu} = 0$ and thus, with $\Omega_0 = 0$.

Another possibility is that the particles in the fluid are polarized and $\Omega_0 \neq 0$. In the latter case we expect that the spin tensor has the structure

$$\omega_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\tilde{\Omega}/T_0 & 0 \\ 0 & \tilde{\Omega}/T_0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

where the parameter T_0 has been introduced to keep $\omega_{\mu\nu}$ dimensionless. This form yields $k^{\mu} = \tilde{\Omega}^2(\gamma/T_0) (0, x, y, 0)$ and $\omega^{\mu} = \tilde{\Omega}(\gamma/T_0) (0, 0, 0, 1)$. As a consequence, we find $\zeta = \tilde{\Omega}/(2T_0)$, which, for consistency with the hydrodynamic background equations, implies

$$\tilde{\Omega} = 2 \Omega_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののの

It follows that $\bar{k}^{\mu} = \gamma \tilde{\Omega} r (0, x/r, y/r, 0)$ and $\bar{\omega}^{\mu} = \gamma (0, 0, 0, 1)$, leading to $m^{\mu} = (0, x/r, y/r, 0)$, $n^{\mu} = (0, 0, 0, 1)$, $\cosh(\psi) = \gamma$, and $\sinh(\psi) = \gamma \tilde{\Omega} r$. With all these quantities determined, it is rather straightforward to show that our spin-evolution equations are fulfilled.

We observe that $d\psi/d\tau = 0$, since the four-vectors m^{μ} and a^{μ} are parallel. We also note that the spin tensor agrees with the thermal vorticity, namely

$$\omega_{\mu
u} = -rac{1}{2} \left(\partial_{\mu} eta_{
u} - \partial_{
u} eta_{\mu}
ight)$$

as emphasised in the works by Becattini and collaborators.

< ロ > < 同 > < 三 > < 三 >

In this work **we have introduced a hydrodynamic framework, which includes the evolution of the spin density in a consistent fashion**. Equations that determine the dynamics of the system follow solely from conservation laws. Thus, they can be regarded as a minimal extension of the well established perfect-fluid picture.

Our framework can be used to determine the space-time dynamics of fluid variables, now including also the spin tensor, from initial conditions defined on an initial space-like hypersurface. This property makes them useful for practical applications in studies of polarization evolution in high-energy nuclear collisions and also in other physics systems exhibiting fluid-like, collective dynamics connected with non-trivial polarization phenomena. In particular, the possibility to study the dynamics of systems in local thermodynamic equilibrium represents an important advance compared to studies, where global equilibrium was assumed.