

Based on: S.S. Afonin, arXiv:1705.01899

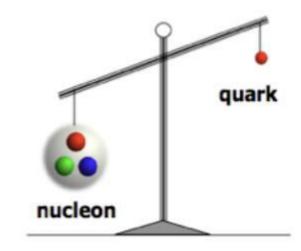
A NOVEL MULTIQUARK APPROACH TO HADRON RESONANCES

Sergey Afonin

Saint Petersburg State University

Strong interactions: almost 99% of mass of visible universe

Analytical description - ?

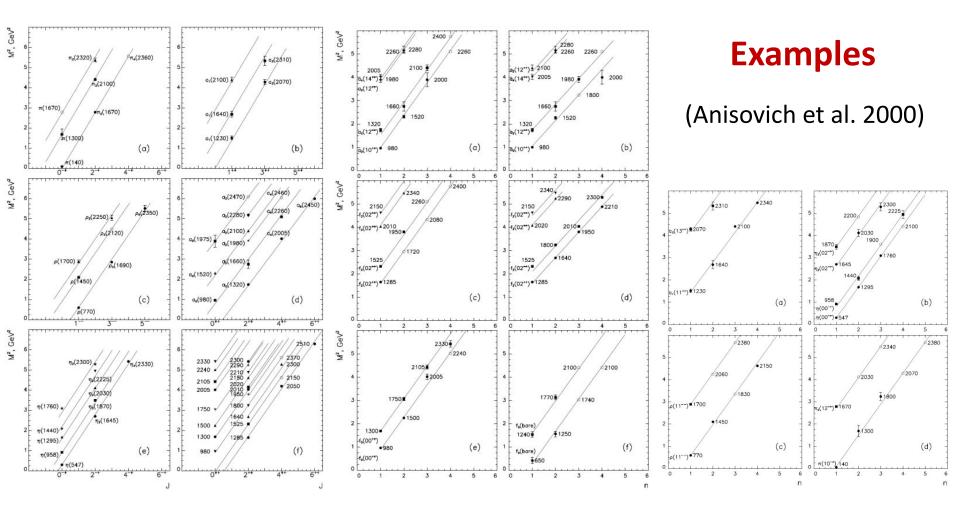


- Mass generation Encoded in the hadron spectrum!
- Lattice: O'k for numbers but no physical picture of resonance formation Many models in the last 50 years — Success was partial Non-relativistic picture for light hadrons – O'k for classification. It predicts correctly the observed quantum numbers. Except π_1 Relativistic descriptions – too many variants for (*P,C*)-parities

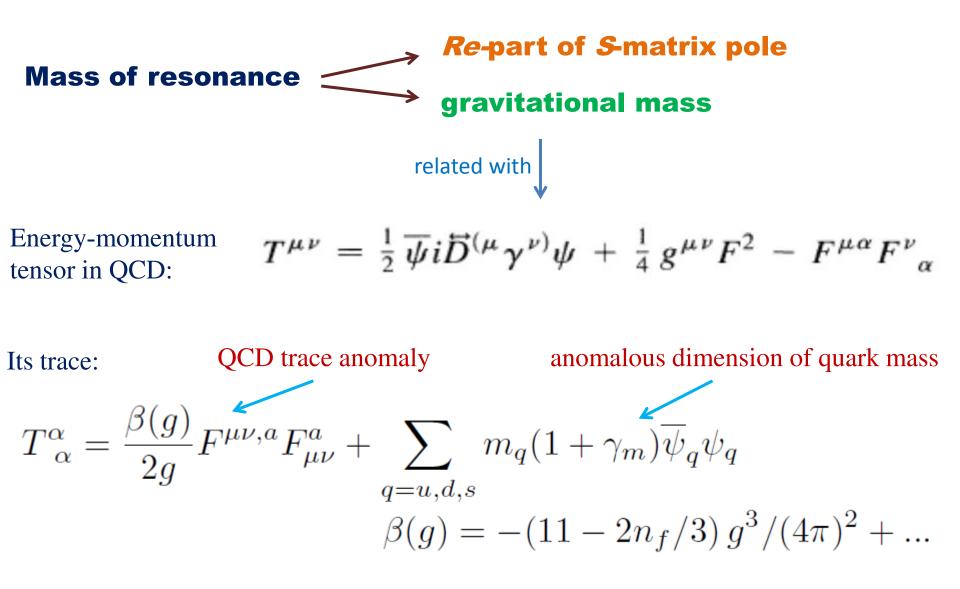
New ideas - ?

The light hadrons are ultrarelativistic systems.

The orbital angular momentum *L* of hadron constituents is not relativistic. How to explain the appearance of Regge trajectories without *L*?



HADRON MASS: THE CENTRAL PROBLEM



$$M = \frac{\langle P | H_{\rm QCD} | P \rangle}{\langle P | P \rangle} |_{\rm rest \ frame}$$

$$H_{\rm QCD} = \int d^3 \vec{x} \, T^{00}(0, \vec{x})$$

 $\langle P|P\rangle = 1$ — non-relativistic normalization

 $\langle P|P\rangle = 2E$ — relativistic normalization

Hadron mass in relativistic case:

$$2m_h^2 = \langle h | T_\alpha^\alpha | h \rangle$$

renorminvariant!

A consequence of the Ward identity $2p_{\mu}p_{\nu} = \langle h|T_{\mu\nu}|h\rangle$

Our ansatz:

$$m_h^2 = \Lambda(E_h + 2m_q) = \Lambda E_h + m_\pi^2$$

where $E_h \sim \langle h | G_{\mu\nu}^2 | h \rangle \neq 0$ $m_u = m_d \doteq m_q$

 Λ is universal for light hadrons and fixed by GOR relation

$$m_h^2 = \Lambda E_h + m_\pi^2$$

By assumption

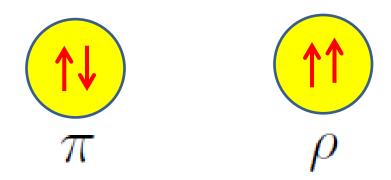
$$E_h \sim \langle G_{\mu\nu}^2 \rangle$$

 ΛE_h renorminvariant!

Let us fix $\langle \bar{q}q \rangle = -(250 \text{ MeV})^3, m_u + m_d = 11 \text{ MeV}, f_{\pi} = 92.4 \text{ MeV}$

This yields $\Lambda = 1830 \; {\rm MeV}$

Consider the rho-meson



 $E_
ho~pprox~310~{
m MeV}$ - the energy cost for the given spin flip (looks like a constituent mass!)

The non-renorminvariant logic does not work!

$$m_{\rho} \neq E_{\rho} + m_{\pi}$$

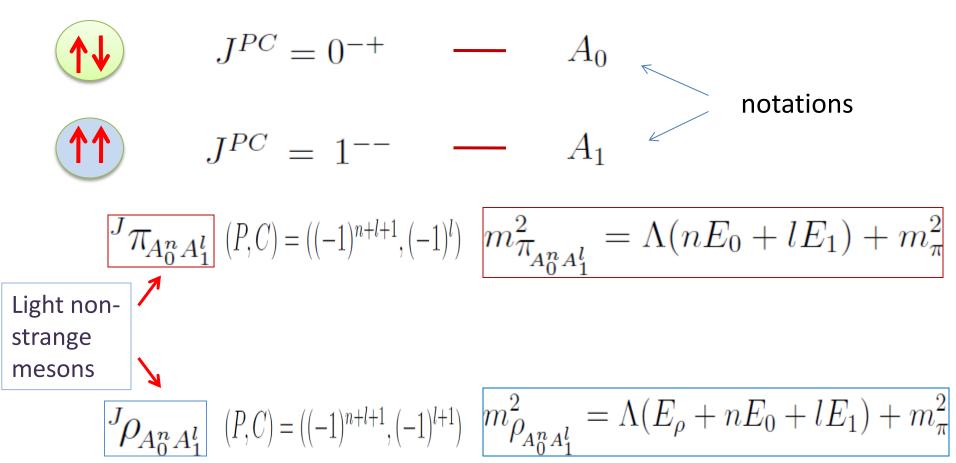
$$m_h^2 = \Lambda E_h + m_\pi^2$$

Higher spin and radial excitations with correct quantum numbers?

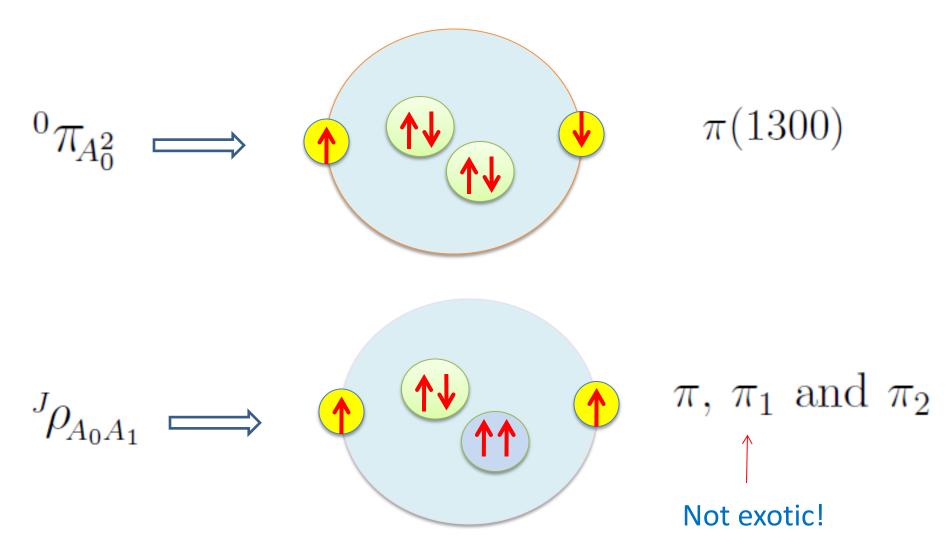
<u>A proposal</u>: Let us assume that gluodynamics leads to formation of gluon analogues of positronium inside hadrons

We will call them

UNDERQUARKONIA

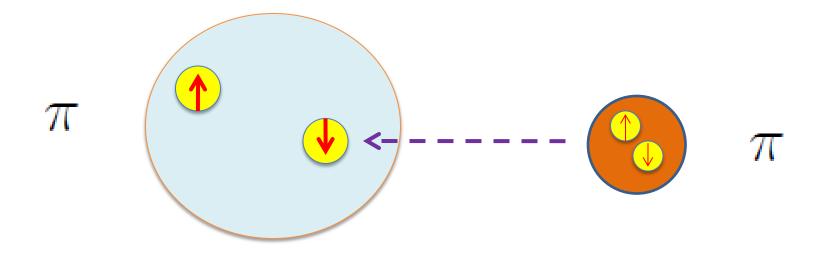


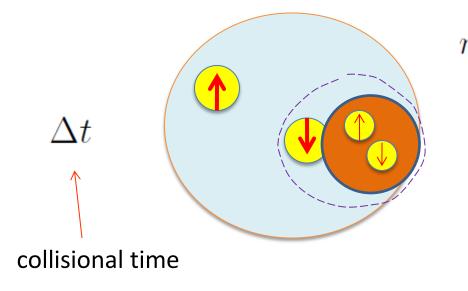
Examples



Phenomenologically: $E_0 \approx 450$ $E_1 \approx 570$ MeV

Collisional excitations





$$m_h^2 = \Lambda(E_h + 2m_q) = \Lambda E_h + m_\pi^2$$
$$m_q \to m_q + m_\pi$$
$$\blacksquare$$
$$m_\sigma^2 = \Lambda m_\pi + m_\pi^2$$

For our inputs: $m_{\sigma} \approx 525 \text{ MeV}$.

General principle:

$$m_{\pi_h}^2 = \Lambda m_h + m_\pi^2$$

Examples

$\pi_{ ho}$	$m_{h_1} \approx 1190 \text{ MeV}$	$h_1 \to \rho \pi$	$h_1(1170)$	
π_η	$m_{\pi_{\eta}} \approx 1010 \; \mathrm{MeV}$	$\pi_\eta \to \eta \pi$	$a_0(980)$	
$\pi_{\!K}$	$m_{\pi_K} \approx 970 { m ~MeV}$	$\pi_K \to \pi \pi$	$f_0(980)$	
K_{π}	$m_{K_{\pi}} \approx 710 \mathrm{MeV}$		$K_0^*(800)$	
		PDG: 682 ± 29 MeV		

In conclusion...

The proposed approach is broader than "just another one model" as it gives a new language for discussion of hadron resonances, for interpretation of data in the hadroproduction and formation experiments, and a possible starting point for construction of essentially new dynamical models.