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wK scattering appears as final state in many hadronic processes.

@ Good description in many previous works with Unitarized Chiral

Perturbation Theory: oller,0set (1999).Dobado,Pelsez (1997). Oller,Oset, Peldez (1999).

Jamin,Oller,Pich (2000). Gomez Nicola,Peldez (2002).

Best determination Roy—Steiner anaIySiS: Biittiker, Descotes-Genon,Moussallam (2004).
K;(800)/k appears in these works and in other papers.

However K;(800)/x still needs confirmation according to PDG.

Relevant to complete the lightest scalar nonet and rule out o-glueball
interpretation.

We have been encouraged to perform a similar analysis for the
K;(800)/k as done for the f5(500)/0 by our group.

Experimental groups ask for simple but consistent parametrizations to
be used at LHCb.
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Introduction

@ Steps:
© Simple fits with unitarity and analyticity. There is no dynamical input.
@ Check of the Forward Dispersion Relations (FDR).
© Impose FDR to the fits.
© Important to obtain the correct parameter of the poles.

@ Data obtained from LASS experiments (ston et al., Estabrooks et al.).

o First step in a long term project.
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Forward dispersion relations

@ We form symmetric or antisymmetric amplitudes under s <> u
exchange.

T+ — 17’1/2 + 2T3/2’

: : (1)
T ==-TY2_Z2T78%/72
3 3

o T!is the amplitude of defined isospin .
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Forward dispersion relations

@ We will take for our analysis t = 0, they are called FDR.

@ For the symmetric s <> u amplitude one subtraction is needed

Re TH(s) = T*(su) + &) (2)
< o[ ImT*(s) Im T+(s')
P/Sth o |:(S/ - S)(S/ - Sth) a (5/ +5s— 2Z7TK)(S/ -+ Sth — QZﬂ.K) ’
3)

@ For the antisymmetric amplitude no subtraction is needed

25 — 2% 0
Re T~(s) = 22— 2%k “K)P/ ds’

™ th

Im T—(s')

(s —s)(s +s—2Y,k) *)
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Unconstrained Fits (UFD):Elastic region

@ We use the unitary functional form for the partial waves
1 1
I
t = 5
i(s) o(s) cotdl(s) — i ®)
@ Where
cotd! (s = 2 2I+1 Z Bhw(s (6)

with w(s) = y(s)—ay/y(s0)—y(s)

= as our new variable (conformal
V/y(s)+a4/y(s0)—y(s)
mapping).
Here y(s) = (ﬁ)z defines the circular cut on the next figure.

w used to maximize the analyticity domain.
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Unconstrained Fits (UFD):Elastic region
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Figure: Structure of the PW.

@ « is used to center the point of energy s. for the expansion.
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Unconstrained Fits (UFD):Inelastic region

. . . I(5)e2%(5) _1 ol
In the inelastic region t/ = % = |t/|e/I.

We use complex rational functions that near each resonance look like
BW.

We impose matching conditions on the inelastic nk threshold.

We use up to F1/2 which is very small and neglect G1/2 in the
studied energy region.

Although we use for our analysis the P3/2, D3/2 and the F/2 their
contribution is small. Not shown here.
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FDR check of UFD
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FIgU €. FDR unconstrained, symmetric and antisymmetric. Clear difference between the input and output

@ Symmetric incompatibilities caused by the S/2 and the S$3/2 PW.
@ Antisymmetric deviations due to Regge contribution.

@ Room for improvement — Constrained fits.

@ Above 1.8GeV the discrepancies are too big to impose FDR.
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Constrained fits to data (CFD)

@ The change in the symmetric amplitude around 1 — 1.2GeV is caused
by the change of the S3/2-wave. The Regge contribution in this
region is small.

@ The huge change of the antisymmetric one is caused by the Regge
wK factorization constant.

ReT(s) i ReT'(s) — Dispersive UFD
— - Input UFD

— Dispersive CFD
— - Input CFD

0.5

0.5

o L S S ) T, 12
s"%(Gev) s"%(GeV)

Figure: FDR constrained, symmetric and antisymmetric. Fairly compatible up to
1.6 GeV
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Constrained fits to data (CFD)

@ The change in the symmetric amplitude around 1 — 1.2GeV is caused
by the change of the S3/2-wave. The Regge contribution in this
region is small.

@ The huge change of the antisymmetric one is caused by the Regge
wK factorization constant.
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Figure: FDR unconstrained, symmetric and antisymmetric. It is clear the huge

difference between the input and output
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o We study the FDR up to 1.7 — 1.8GeV.

o We define a X% between the input and output, with a weight using
the degrees of freedom of the amplitudes.

@ There is a x3 between the UFD parameters and the new ones.

@ After the minimization of the total function we obtain

60 T T T
\\_ v Jongejans et al.
Y 5. s) & Choetal.
S50+ SN, o -
o Estabrooks et al V1 > Bakker etal.
* Astonetal. ‘}\ = Estabrooks et al.
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40 CFD B -l E N, — - final UFD 7
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FIgU re: s1/2 and s3/2 phase shifts.
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Figure: P1/2 phase shifts.

o If the K*(892) is to be well described the phase shift must be lower at
1GeV.

@ Paris group — solve Roy equations. They use the data at 0.935GeV
as the matching point.
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Constrained Fits (UFD):Inelastic region

@ Almost
unchanged
below 1.5
GeV.

@ Changes
above that
point, the ‘ .
CFD solution i : e
starts to be o S
incompatible [ G
with the
UFD.

200

100

s Mev)
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@ Now we can obtain the threshold parameters for the most important partial

Waves.
Table: Scattering lengths.
SL UFD CFD Roy-Steiner result
meay” 0.22240.014 0.2184+0.014  0.224+ 0.022
mpay®  -0.101£0.03 -0.054:0.014  -0.0448= 0.0077

m3a)’®  0.03140.008 0.024-+0.005  0.019+ 0.001

@ Dirac collaboration measure the difference between the scalar partial waves.

1/2 3/2
5 ( o7 - a?) =011 5% mt, (DIRAC) (7)

@ Our results are compatible, although we obtain much smaller errors.

1
5 (2% - a?) = 0.0013% m2. (CFD) (8)
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Pole parameters

@ We could use the parameterizations to calculate the poles
o For the kappa resonance K;(800) we obtain

Table: K (800) parameters.

Group Mass Width

UFD 673 £ 19 674 + 24

CFD 680 £ 19 667 £ 23
Moussallam et al. 658 £ 13 557 £ 24
D.Bugg 663 + 34 658 + 44

Zheng,Zhou 694 +£ 53 606 £ 59

@ The values of the masses are compatible. Our width is not compatible
with Moussallam's result. However the values are obtained using
parametrizations (model dependent).
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Padé approximants and Pole parameters

We use this Padé approximants to calculate the parameters of the
strange resonances.

It is a model independent calculation.

Based on its analytic properties, for example, when searching one pole
the approximants read

=
L

an(s — so)V

P{V(s, s0) = ak(s — so)k +
1— (s — o)

0

(9)

x
Il

With a pole located at s, = so + -2%-. Where a, = F(")(sy)/n!.

aN+1
We always truncate the sequence when the difference between the
poles is smaller than the experimental error.
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@ The method is suitable for the calculation of both elastic and inelastic
resonances.

@ The Padé sequence gives us the continuation to the continuous
Riemann Sheet.

@ We take care of the calculation of the errors. Apart from the
experimental and systematic errors of each parameterization we also
include different fits.

I-Riemann Sheet

Ve .
/ ‘\
.e"/ “l\"‘.‘ S ';]

S II-Riemann Sheet
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@ For every fit we search the sp thats gives the minimum difference for
the truncation of the sequence.

@ We stop at a N (N + 1 derivatives) where the systematic uncertainty
is smaller than the statistical one (usually N = 4 is enough).

@ Run a montecarlo for every fit to calculate the parameters an errors of

every resonance.
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Elastic resonances

e For the K (800) resonance we obtain
VS = (670+18)— i(295 + 28)MeV/

V% = (682+29)—i(274 + 12)MeV(PDG) (10)
Breit-Wigner-like parameterizations — . .
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Inelastic resonances

e For the K;(1430) we find
VS = (143146)— i(110 £ 19)MeV
VS = (14254 50) — i(135 + 40)MeV/(PDG) (11)

T
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e For the K{(1410) we find
V5 = (13684 38) — i(1067 &) MeV
V% = (14144 15) — (116 + 10)MeV(PDG) (12)
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e For the K3(1430) we find
Vo = (1424 +4) — i(66 + 2)MeV
V5 = (14324 +1.3) — i(55 + 3)MeV(PDG) (13)
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e For the K3(1780) we find
V5 = (1754 +13) — i(119 + 14)MeV
V5 = (1776 +7) — i(80 + 11)MeV/(PDG) (14)

[ T [ T
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Conclusions

@ The data sets are not compatible with Forward Dispersion Relations.
@ We provide simple constrained data fits compatible with Forward
Dispersion Relations below 1.7 GeV.

@ Resonance parameters obtained from model-independent analytic
approach including systematic uncertainties
e k pole confirmed. Parameters compatible with PDG and Roy-Steiner
equations.
e Inelastic resonances are compatible with the values listed in the PDG.
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Thank you for your attention!
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