"Excited QCD 2017", Sintra - Portugal, May 10, 2017

Formation and deformation of the $\psi(3770)$

Susana Coito
Collaborator: Francesco Giacosa
Jan Kochanowski University, Kielce, Poland

Introduction

Mysteries in the data

The vector meson $\psi(3770)$, reported in PDG with average parameters $M=3773.13 \mathrm{MeV}$ and $\Gamma=27.2 \pm 1.0 \mathrm{MeV}$, has a deformed, i.e., non-Breit-Wigner line-shape.

Figure: $\sigma=\sigma(E)$ in [nb, GeV]. PRL101,102004(2008) BES, $e^{+} e^{-} \rightarrow$ hadrons

Other data:

PRD76,111105(2007) BaBar
ISR

The Novosibirsk group: KEDR Collaboration, PLB711,292(2012).

Figure: $e^{+} e^{-} \rightarrow D \bar{D}$
Analysis: interference between resonant and nonresonant part, where the nonresonant part is related to the nonresonant part of the form factor (use of vector dominance model). Interpretation with 1 resonance only !

Phenomenological Studies

Other analysis from Novosibirsk group

PRD87,057502(2013)

Interference between the $\psi(3770)$ and the tail of the $\psi(2 S)$.

Some predictions concerning the $\psi(3770)$:

- In PRD88,014010(2013) contribution of off-shell PV channels
- PRD91,114022(2015), EPJC76,192(2016), and NPB888,271(2014) production through $p \bar{p}$ and baryonic contributions. Possibility to test at PANDA.
- PLB718,1369(2013) production $e^{+} e^{-} \rightarrow D \bar{D}$, including interference with nonresonant background due to $\psi(2 S)$, and rescattering of final states:

- PRD80,074001(2009) E. van Beveren, G. Rupp

Interference with background due to $D \bar{D}$ threshold enhancement

Our plan:
Study the line-shape of the $\psi(3770)$ using an unitarized effective Lagrangian model.

Such model has been applied to some ligh-meson systems and, in some cases, an extra dynamically generated pole has been found.

- PRD93,014002(2016) Giacosa,Wolkanowski,Rischke: $a_{0}(980), a_{0}(1450)$.
- NPB909,418(2016) Wolkanowski,Giacosa,Sołtysiak: $K_{0}^{*}(800), K_{0}^{*}(1430)$.

Figure: $K \pi$ channel

An Effective Lagrangian Model

Defining the Lagrangian

We consider the following decay of a vector to two pseudovectors:

$$
\psi(3770) \rightarrow D^{+} D^{-}
$$

We define a Lagrangian density as

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{I} \\
\mathcal{L}_{0}=-\frac{1}{4} \Psi_{\mu \nu} \Psi^{\mu \nu}+\frac{1}{2} m_{\psi}^{2} \psi_{\mu} \psi^{\mu}+\frac{1}{2}\left(\partial_{\mu} D^{+} \partial^{\mu} D^{-}-m_{D}^{2} D^{+} D^{-}\right) \\
\Psi_{\mu \nu}=\partial_{\mu} \psi_{\nu}-\partial_{\nu} \psi_{\mu} \\
\mathcal{L}_{I}=\operatorname{ig} \psi_{\mu}\left(\partial^{\mu} D^{+} D^{-}-\partial^{\mu} D^{-} D^{+}\right)
\end{gathered}
$$

The 3-level decay width, for the spherically symmetric case, is given by

$$
\Gamma(E)=\frac{g^{2}}{8 \pi} \frac{p(E)}{s}|\mathcal{M}|^{2} .
$$

The amplitude $|\mathcal{M}|^{2}$ is computed from the Lagrangian. It comes

$$
|\mathcal{M}|^{2}=\frac{1}{3} p^{2}(E) f(E)
$$

where $f(E)$ is a cutoff function

$$
f(E)=e^{-2 p^{2}(E) / \Lambda^{2}}
$$

Free parameters:
g coupling for the vertex $\psi(3770)$ to $D^{+} D^{-}$
Λ cutoff parameter, $\Lambda \sim \frac{1}{\sqrt{\left\langle r^{2}\right\rangle}}$

Propagator

The propagator for an unstable particle is given by

$$
\Delta(E)=\frac{1}{E^{2}-m_{\psi}^{2}+\Sigma(E)}
$$

where the loop-function, or self-energy, is

$$
\begin{gathered}
\Sigma(E)=\operatorname{Re} \Sigma(E)+i \operatorname{Im} \Sigma(E) \\
\operatorname{Im} \Sigma(E)=E \Gamma(E) \\
\operatorname{Re} \Sigma(E)=\Omega(E)
\end{gathered}
$$

Dispersion relation, cauchy principal value

$$
\Omega(E)=\frac{1}{\pi} \int_{t h}^{\infty} \frac{\Gamma\left(q^{2}\right)}{E^{2}-q^{2}} 2 q d q
$$

The introduction of $\Omega(E)$ in the propagator leads to a normalized spectral function (demonstration in PRD88,025010(2013)).

Spectral function with $D^{+} D^{-}$loop but no rescattering

Considering the once-subtracted dispersion relation

$$
\begin{gathered}
\Omega_{1 S}(E)=\Omega(E)-\Omega\left(m_{\psi}\right) \\
\Sigma(E)=\Omega_{1 S}(E)+i \Gamma(E) \\
\Delta(E)=\frac{1}{E^{2}-m_{\psi}^{2}+g^{2} \Omega_{1 S}(E)+i g^{2} E \Gamma(E)} \\
d_{S}(E)=\frac{2 E}{\pi} \frac{E g^{2} \Gamma(E)}{\left(E^{2}-m_{\psi}^{2}\right)^{2}+\left(g^{2} \Sigma(E)\right)^{2}}
\end{gathered}
$$

Estimating the cutoff through the wave-function of a system $c \bar{c}(D$ - wave $)-D^{+} D^{-}(P-$ wave $)$

$\sqrt{\left\langle r^{2}\right\rangle}=4.74 \mathrm{GeV}^{-1} \sim 0.93 \mathrm{fm}$.

Cutoff parameter: $\Lambda \sim \frac{1}{4.74 \mathrm{GeV}^{-1}}=211 \mathrm{MeV}$

Two poles are found: $3744-i 11 \mathrm{MeV}$ and $3775-i 6 \mathrm{MeV}$!

Dependence of the spectral function on the coupling g

$3741-i 20 \& 3774-i 3|3744-i 11 \& 3775-i 6| 3743-i 4 \& 3778-i 9$

Spectral function with $D^{+} D^{-}$loop and rescattering of final states

Redefining the loop function

$$
\begin{gathered}
\Sigma^{\prime}(E)=g^{2} \Sigma+g^{2} \Sigma \lambda \Sigma+\cdots=g^{2} \Sigma \sum_{n=0}(\lambda \Sigma)^{n}=g^{2} \frac{\Sigma}{1-\lambda \Sigma} \\
\Delta(E)=\frac{1}{E^{2}-m_{\psi}^{2}+g^{2}\left(\Sigma^{\prime}(E)-\operatorname{Re} \Sigma\left(m_{\psi}\right)\right)}
\end{gathered}
$$

a new parameter λ is introduced (rescattering coupling)

Influence of the rescattering over the spectral function, for $\Lambda=211 \mathrm{MeV}$

Width dependence on the cutoff

Influence of the rescattering over the spectral function, for $\Lambda=506 \mathrm{MeV}$

Fit with rescattering: channel $D^{+} D^{-}$

$$
\begin{array}{c|c}
\Lambda=211 \mathrm{MeV} & \Lambda=506 \mathrm{MeV} \\
3775-i 6,3744-i 11 & 3774-i 3,3742-i 13
\end{array}
$$

Summary and Perspectives

- Given the increasing number of $X Y Z$ states, and the existence of many thresholds in the charmonium energy region, correct analysis of data are very important to understand the signals.
- We are employing an effective Lagrangian approach to study the line-shape of the $\psi(3770)$. Independently of the final state rescattering, we find two poles associated with the cross section fitted to data.

Further studies:

- Production to leptons
- Include coupled-channels and/or other poles
- Compute phase-shifts

