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Motivation
‣ Intense experimental activity to explore meson structure at LHC, BaBaR, Belle, CLEO 

and soon at GlueX (Jlab) and PANDA (GSI)

‣ Search for exotic mesons (hybrids, glueballs, … maybe      ?) 

‣ Need to understand also “conventional”     -mesons in more detail

‣ Study production mechanisms, transition form factors  

(also important for hadronic contributions to light-by-light scattering)

qq̄

qq̄

Guiding principles of our approach (CST - Covariant Spectator Theory):

Find      interaction that can be used in all mesons  
(unified model)

Must be relativistic (relativity necessary with light quarks), and 
reduce to linear+Coulomb in the nonrelativistic limit

Manifest covariance: strongly constrains spin-dependence of 
interactions

Learn about the Lorentz structure of the confining interaction

Quark masses are dynamic: self-interaction should be 
consistent with      interaction

qq̄

qq̄

Huge mass variation:

from pions (~0.14 GeV)

to bottomonium (> 10 GeV)

q q

q̄

Theory: a huge amount of work has already been done on meson structure (LQCD, BS/DSE, 
constrained dynamics two-body Dirac equation, relativized Schrödinger equation, …)
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CST equation for two-body bound states
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Charge conjugation, denoted by the operator C, trans-
forms quarks into antiquarks and vice versa, accom-
plished by taking the transpose of the vertex function
and changing p1 $ �p2. The amplitude is invariant un-
der charge conjugation if it remains unchanged up to a
phase ⌘, with ⌘2 = 1. The required condition is therefore

C�1 �T
BS(�p, P ) C = ⌘ �BS(p, P ) , (8)

where we have used that p1 = p+ 1
2P $ �p2 = �p+ 1

2P
implies p $ �p. Performing this operation on Eq. (1),
and using C�1 �µT C = ��µ and the charge conjugation
invariant conditions

C�1VT (p, k;P )C = V(�p,�k;P )

C�1ST (k)C = S(�k) (9)

gives

C�1�T
BS(�p, P )C = i

Z

d4k

(2⇡)4
V(p,�k;P )S(�k2)

h

C�1�T
BS(k, P )C

i

S(�k1)

= i

Z

d4k

(2⇡)4
V(p, k;P )S(k1)

h

C�1�T
BS(�k, P )C

i

S(k2) , (10)

which shows that C�1�T
BS(�p, P )C satisfies the same

equation as �BS(p, P ) (and hence the two are equal up
to a phase), provided conditions for the propagators and
kernel, Eqs. (7) and (9), are satisfied. We will always
choose kernels that satisfy condition (9).

Note that a crucial step in the derivation was our abil-
ity to change the four-dimensional integration variable
k ! �k. This condition must be preserved when we
specialize to the Covariant Spectator Theory (CST).

B. Charge conjugation invariant CST equations

Next we introduce a charge conjugation invariant form
of the bound-state CST equations. For cases when we
want the correct limit as P ! 0 these are the “four-
channel” equations previously discussed [3].

To motivate the structure of these equations, begin
with the BS equation (1) and consider the k0 integration.
The dressed propagator of quark i with dressed mass m
and renormalization constant Z0 can be written

S(ki) ' Z0(m+ /ki)

m2 � k2i � i✏
(11)

near its poles at ki0 = ±Eki , where Eki ⌘ p

m2 + k2
i .

Figure 2 shows the positions of the four propagator poles
in the complex k0 plane in the bound-state rest frame
(note that k0 is the zero component of the relative mo-

mentum k, not of the individual particle momenta ki).
In the rest frame, the total momentum is Pr = (µ,0),
the quark and antiquark three-momenta ki are equal to
the relative three-momentum k, and therefore Eki = Ek,
with Ek ⌘ p

m2 + k2. However, in the following we will
continue working in an arbitrary frame with total mo-
mentum P in order to emphasize the manifest covariance
of our framework.

To perform the k0 integration we can close the contour
in the lower or upper half plane. In the CST framework
only poles of propagators are included, whereas the poles
of the kernel are moved to higher order kernels, and ne-
glected. As one can see in Fig. 2, in either half plane the

�Ek � µ
2 �Ek +

µ
2

Ek � µ
2 Ek +

µ
2

Im k0

Re k0

FIG. 2. (color online) The positive-energy poles (colored crosses

with positive Ek) and negative-energy (white crosses with negative

Ek) poles of the propagators of quark 1 (red with �µ/2) and quark

2 (cyan with +µ/2) in the complex k0-plane in the bound-state rest

frame.

respective two poles are separated by the bound-state
mass µ. If µ is large, the pole closer to the origin dom-
inates the integral, and the more distant pole can be
neglected. However, in the limit P ! 0 the two poles
move close together and the contributions of both must
be taken into account.
First we close the k0 contour in the lower half plane.

Introducing the on-shell momenta k̂i = (Eki ,ki) and us-
ing the form (11) for the dressed propagators permits the
two propagator pole contributions to the right hand side
of (1) to be written

�(p, P ) = �Z0

Z

k1

V(p, k̂1 � 1
2P ;P )(m+ /̂k1)

⇥�(k̂1 � 1
2P, P )S(k̂1 � P )

�Z0

Z

k2

V(p, k̂2 + 1
2P ;P )S(k̂2+ + P )

⇥�(k̂2 +
1
2P, P )(m+ /̂k2) , (12)

Integration over relative energy k0:

‣ Keep only pole contributions from constituent particle 
propagators

‣ Poles from particle exchanges appear in higher-order 

kernels (usually neglected — tend to cancel)

‣ Reduction to 3D loop integrations, but covariant

‣ Correct one-body limit

Symmetrize pole contributions from both half planes: charge conjugation symmetry
CST verticesBS vertex (approx.)

If bound-state mass    is small:

both poles are close together (both important)

µ

= + + +1
2
—{ }

Once the four CST vertices (with one quark on-shell) are all known, one can use this equation 
to get the vertex function for other momenta (also Euclidean).

clidean space, the dynamics in ladder-rainbow approxima-
tions is driven by a pure Lorentz-vector kernel, essentially
a dressed gluon propagator.

The CST belongs to the approaches related to the BSE,
but is similar in spirit to the DS-BS framework in that it
aims to incorporate the dynamical origin of the constituent
quark masses by dressing the bare quark propagators with
the interquark kernel in a consistent fashion. However,
the CST is formulated and solved directly in Minkowski
momentum space. This is advantageous over Euclidean
formulations (although a number of singularities have to
be handled numerically) because no analytic continuations
are needed to calculate, e.g., form factors [15, 16], even in
the timelike region. The reason is that in CST one only
needs to determine the quark propagator pole positions,
which are all located on the real axis, both for fixed or
running dynamical quark masses. The chosen interaction
kernel is a manifestly covariant generalization of the Cor-
nell potential, and the full Dirac structure of the quarks is
taken into account.

The Covariant Spectator Equation (CSE) is obtained
from the BSE [Fig. 1(a)] by carrying out the loop energy
integration such that only quark-propagator pole contri-
butions are kept [Figs. 1(b) and 1(c)]. This prescription
is motivated by partial cancellations between higher-order
ladder and crossed-ladder kernels, implying that a CST
ladder series e↵ectively contains crossed-ladder contribu-
tions which are necessary for the two-body equation to
reach the correct one-body limit [3].

In this work we are focussing on systems where one
quark is typically much heavier than the other, so we are
close to the one-body limit. The BS ladder approxima-
tion does not possess this limit, and it would not be a
good choice to describe these mesons. On the other hand,
heavy-light systems are ideal to apply a simplified version
of the CSE, the so-called one-channel spectator equation
(1CSE): the positive-energy pole of the heavier quark dom-
inates, such that the other three CST vertex functions can
be neglected. The 1CSE is shown in Fig. 1(c), inside the
solid rectangle.

This equation retains most important properties of the
complete CSE, namely manifest covariance, cluster separa-
bility, and the correct one-body limit. It is also a good ap-
proximation for equal-mass particles, as long as the bound-
state mass is not too small (this excludes the pion from its
range of applicability). In fact, in a properly symmetrized
form to account for the Pauli principle, it has been ap-
plied very successfully to the description of the two- and
three-nucleon systems [17, 18, 19].

A property the 1CSE does not maintain is charge-
conjugation symmetry. Therefore, heavy quarkonium states
calculated with the 1CSE have no definite C-parity. In
principle, this problem is easily remedied by using instead
the two-channel extension inside the dashed rectangle of
Fig. 1(c). However, we decided that the considerable in-
crease in computational e↵ort would not be justified for
the purpose of this work: of the quarkonia with JP = 0±

(a)

(b)

(c)

Figure 1: Graphic representations of (a) the BSE for the qq̄ bound
state vertex function �, where V represents the kernel of two-body
irreducible Feynman diagrams; (b) the BS vertex function approxi-
mated as a sum of CST vertex functions (crosses on quark lines indi-
cate that a positive-energy pole of the propagator is calculated, light
crosses in a dark square refer to a negative-energy pole); (c) the com-
plete CST equation. The solid rectangle indicates the one-channel
equation used in this work, the dashed rectangle a two-channel ex-
tension with charge-conjugation symmetry.

and 1±, only the axial-vector mesons (JP = 1+) come in
both C-parities, and these pairs are separated by only a
few MeV (5 to 6 MeV in bottomonium, 14 MeV in char-
monium). Thus, as long as we do not seek an accuracy
better than about 10-20 MeV, the use of the 1CSE also
for heavy quarkonia is perfectly justified. Consistent with
this level of accuracy, we also set mu = md throughout
this work.

We use a kernel of the general form

V =
⇥
(1� y)

�
11 ⌦ 12 + �5

1 ⌦ �5
2

�
� y �µ

1 ⌦ �µ2
⇤
VL

� �µ
1 ⌦ �µ2 [VOGE + VC] ⌘

X

K

VK⇥K(µ)
1 ⌦⇥K

2(µ) , (1)

where VL, VOGE, and VC are relativistic generalizations
of a linear confining potential, a short-range one-gluon-
exchange (in Feynman gauge in this work), and a con-
stant interaction, respectively. The confining interaction
has a mixed Lorentz structure, namely equally weighted
scalar and pseudoscalar structures, and a vector struc-
ture. The parameter y dials continuously between the two
extremes, y = 1 being pure vector coupling, and y = 0
pure scalar+pseudoscalar coupling. The OGE and con-
stant potentials are Lorentz-vector interactions. The signs
are chosen such that—for any value of y—in the static
nonrelativistic limit always the same Cornell-type poten-
tial V (r) = �r � ↵s/r � C is recovered.

2

      bound-state with mass    µqq̄Bethe-Salpeter equation for

2PI diagrams
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CST equations
Closed set of equations when external legs are systematically placed on-shell

Solutions: bound state masses μ and corresponding vertex functions Γ 

All have smooth one-body limit (Dirac equation) and nonrelativistic limit (Schrödinger equation).

clidean space, the dynamics in ladder-rainbow approxima-
tions is driven by a pure Lorentz-vector kernel, essentially
a dressed gluon propagator.

The CST belongs to the approaches related to the BSE,
but is similar in spirit to the DS-BS framework in that it
aims to incorporate the dynamical origin of the constituent
quark masses by dressing the bare quark propagators with
the interquark kernel in a consistent fashion. However,
the CST is formulated and solved directly in Minkowski
momentum space. This is advantageous over Euclidean
formulations (although a number of singularities have to
be handled numerically) because no analytic continuations
are needed to calculate, e.g., form factors [15, 16], even in
the timelike region. The reason is that in CST one only
needs to determine the quark propagator pole positions,
which are all located on the real axis, both for fixed or
running dynamical quark masses. The chosen interaction
kernel is a manifestly covariant generalization of the Cor-
nell potential, and the full Dirac structure of the quarks is
taken into account.

The Covariant Spectator Equation (CSE) is obtained
from the BSE [Fig. 1(a)] by carrying out the loop energy
integration such that only quark-propagator pole contri-
butions are kept [Figs. 1(b) and 1(c)]. This prescription
is motivated by partial cancellations between higher-order
ladder and crossed-ladder kernels, implying that a CST
ladder series e↵ectively contains crossed-ladder contribu-
tions which are necessary for the two-body equation to
reach the correct one-body limit [3].

In this work we are focussing on systems where one
quark is typically much heavier than the other, so we are
close to the one-body limit. The BS ladder approxima-
tion does not possess this limit, and it would not be a
good choice to describe these mesons. On the other hand,
heavy-light systems are ideal to apply a simplified version
of the CSE, the so-called one-channel spectator equation
(1CSE): the positive-energy pole of the heavier quark dom-
inates, such that the other three CST vertex functions can
be neglected. The 1CSE is shown in Fig. 1(c), inside the
solid rectangle.

This equation retains most important properties of the
complete CSE, namely manifest covariance, cluster separa-
bility, and the correct one-body limit. It is also a good ap-
proximation for equal-mass particles, as long as the bound-
state mass is not too small (this excludes the pion from its
range of applicability). In fact, in a properly symmetrized
form to account for the Pauli principle, it has been ap-
plied very successfully to the description of the two- and
three-nucleon systems [17, 18, 19].

A property the 1CSE does not maintain is charge-
conjugation symmetry. Therefore, heavy quarkonium states
calculated with the 1CSE have no definite C-parity. In
principle, this problem is easily remedied by using instead
the two-channel extension inside the dashed rectangle of
Fig. 1(c). However, we decided that the considerable in-
crease in computational e↵ort would not be justified for
the purpose of this work: of the quarkonia with JP = 0±

(a)

(b)

(c)

Figure 1: Graphic representations of (a) the BSE for the qq̄ bound
state vertex function �, where V represents the kernel of two-body
irreducible Feynman diagrams; (b) the BS vertex function approxi-
mated as a sum of CST vertex functions (crosses on quark lines indi-
cate that a positive-energy pole of the propagator is calculated, light
crosses in a dark square refer to a negative-energy pole); (c) the com-
plete CST equation. The solid rectangle indicates the one-channel
equation used in this work, the dashed rectangle a two-channel ex-
tension with charge-conjugation symmetry.

and 1±, only the axial-vector mesons (JP = 1+) come in
both C-parities, and these pairs are separated by only a
few MeV (5 to 6 MeV in bottomonium, 14 MeV in char-
monium). Thus, as long as we do not seek an accuracy
better than about 10-20 MeV, the use of the 1CSE also
for heavy quarkonia is perfectly justified. Consistent with
this level of accuracy, we also set mu = md throughout
this work.

We use a kernel of the general form

V =
⇥
(1� y)

�
11 ⌦ 12 + �5

1 ⌦ �5
2

�
� y �µ

1 ⌦ �µ2
⇤
VL

� �µ
1 ⌦ �µ2 [VOGE + VC] ⌘

X

K

VK⇥K(µ)
1 ⌦⇥K

2(µ) , (1)

where VL, VOGE, and VC are relativistic generalizations
of a linear confining potential, a short-range one-gluon-
exchange (in Feynman gauge in this work), and a con-
stant interaction, respectively. The confining interaction
has a mixed Lorentz structure, namely equally weighted
scalar and pseudoscalar structures, and a vector struc-
ture. The parameter y dials continuously between the two
extremes, y = 1 being pure vector coupling, and y = 0
pure scalar+pseudoscalar coupling. The OGE and con-
stant potentials are Lorentz-vector interactions. The signs
are chosen such that—for any value of y—in the static
nonrelativistic limit always the same Cornell-type poten-
tial V (r) = �r � ↵s/r � C is recovered.

2

4CSE

1CSE

2CSE

One-channel spectator equation (1CSE): ‣Particularly appropriate for unequal masses


‣Numerical solutions easier (fewer singularities)


‣But not charge-conjugation symmetric

Two-channel spectator equation (2CSE): ‣Restores charge-conjugation symmetry


‣Additional singularities in the kernel

Four-channel spectator equation (4CSE): ‣Necessary for light bound states (pion!)
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Confining potential in momentum space

Linear confinement

confinement cannot be obtained from finite number of gluon exchanges ⇒
non-perturbative treatment of QCD necessary: e.g. lattice simulations of QCD

phenomenological ‘Cornell’ qq̄ potential
Eichten et al PRD 17, 1978,0 and 21, 1980; Richardson PLB 82, 1979

V (r) = −αs

r + σr + C

! good description of quarkonia (cc̄
and bb̄ mesons)

value σ = 0.85 GeV/fm at r ∼ 2 fm:
∃ enough energy to produce light qq̄
pair

light mesons require relativistic
treatment
e.g. “relativized” quark models
Godfrey, Isgur PRD 32, 1985

! good description of meson spectrum
not covariant
no off-shell propagation of quarks

Allton et al, UKQCD Collab., PRD 65, 2002

Elmar Biernat (CFTP/IST) Quarks and mesons in CST May 22, 2014 5 / 23

Allton et al, UKQCD Collab., PRD 65, 054502 (2002)

Static QCD potential from the latticePhenomenological      kernelqq̄

Inspired by Cornell potential:

NR linear potential in momentum space: 

Fourier transform of screened potential

�r = lim
✏!0

�
@2

@✏2
e�✏r

r
Usually:

But simpler: �r = lim
✏!0

��

✏

�
e�✏r � 1

�
⌘ ṼA(r)� ṼA(0)

VA(q) = �8⇡�

q4

Leitão, Stadler, Peña, Biernat, PRD 90, 096003 (2014)

Gross, Milana, PRD 43, 2401 (1991)

Savkli, Gross, PRC 63, 035208 (2001)

highly singular automatic subtraction

only a Cauchy principal value singularity remains

V (r) = �r � C � ↵s

r

hVL�i(p) =
Z

d3k

(2⇡)3
VL(p� k)�(k) = �8⇡�

Z
d3k

(2⇡)3
�(k)� �(p)

(p� k)4

VL(q) = VA(q)� (2⇡)3�(q)

Z
d3q0

(2⇡)3
VA(q

0)FT:

with
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Covariant confining kernel in CST

Covariant generalization: q2 ! �q2

This leads to a kernel that acts like

k̂ = (Ek,k)

p̂R = (EpR ,pR)

pR = pR(p0,p) value of k at which kernel 
becomes singular

k̂p

any regular function

initial state:
either quark or 

antiquark onshell

hVL�i(p) =
Z

d3k

(2⇡)3
m

Ek
VL(p, k̂)�(k̂) = �8⇡�

Z
d3k

(2⇡)3
m

Ek

�(k̂)� �(p̂R)

(p� k̂)4

Ṽ nr
L (r = 0) = 0corresponds to

Properties:
Subtraction regularizes kernel to Cauchy principal value

Nonrelativistic limit → linear potential 

Satisfies the condition 

But does it still confine?

Yes: the vertex function vanishes if both quarks are on-shell!
= 0

Z
d3k

(2⇡)3
m

Ek
!

Z

k

hVLi =
Z

k
VL(p, k̂) = 0

More details: Savkli, Gross, PRC 63, 035208 (2001)

Shorthand
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The covariant kernel

⇥K(µ)
i = 1i, �

5
i , �

µ
i

Our kernel:

‣Confining interaction: Lorentz (scalar + pseudoscalar) mixed with vector 
Coupling strength σ, mixing parameter y

Fa =
1

2
�a

color SU(3) 
generators

qq̄ color singlets1 for Dirac structuremomentum 
dependence

p

F a
1

F a
2

⇥K(µ)
1

⇥K
2(µ)

k
V(p, k;P ) =

3

4
F1 · F2

X

K

VK(p, k;P )⇥K(µ)
1 ⌦⇥K

2(µ)

VL(p, k;P ) =
⇥
(1� y)

�
11 ⌦ 12 + �5

1 ⌦ �5
2

�
� y �µ

1 ⌦ �µ2
⇤
VL(p, k;P )

y = 0

y = 1

pure S+PS

pure V

‣One-gluon exchange with constant coupling strength  
+ Constant interaction (in r-space) with strength C

↵s Lorentz vector}
VOGE+C(p, k;P ) = ��µ

1 ⌦ �µ2 [VOGE(p, k;P ) + VC(p, k;P )]

equal weight (constraint from chiral symmetry)
→ E.P. Biernat et al., PRD 90, 096008 (2014)

for correct nonrelativistic limit
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The One-Channel Spectator Equation (1CSE)

�(p̂1, p2) = �
Z

d3k

(2⇡)3
m1

E1k

X

K

VK(p̂1, k̂1)⇥
K(µ)
1

m1 + /̂k1
2m1

�(k̂1, k2)
m2 + /k2

m2
2 � k22 � i✏

⇥K
2(µ)

VL(p̂1, k̂1) = �8�⇡

"
1

(p̂1 � k̂1)4
� Ep1

m1
(2⇡)3�3(p1 � k1)

Z
d3k01
(2⇡)3

m1

Ek0
1

1

(p̂1 � k̂01)
4

#

Eik =
q

m2
i + k2

VOGE(p̂1, k̂1) = � 4⇡↵s

(p̂1 � k̂1)2
VC(p̂1, k̂1) = (2⇡)3

Ek1

m1
C�3(p1 � k1)

= V ��

p̂1 k̂1p̂1

p2 k2

PP

p2

We solve the 1CSE for heavy and heavy-light systems

‣Should work well for bound states with at least 
one heavy quark

‣Easier to solve numerically than 2CSE or 4CSE

‣C-parity splitting small in heavy quarkonia

‣For now with constant constituent quark masses  

(quark self-energies will be included later)

‣Momentum-dependence of kernels is also simpler

‣Linear and OGE kernels need to be regularized  
We chose Pauli-Villars regularizations with parameter ⇤ = 2m1
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Numerical solution of the 1CSE

Eik =
q

m2
i + k2

= V ��

p̂1 k̂1p̂1

p2 k2

PP

p2

‣Define relativistic “wave functions”

‣Switch to basis of eigenstates of total orbital angular momentum L and of total spin S 
(not necessary, but useful for spectroscopic identification of solutions)

‣Use ρ-spin decomposition of the propagator

m2 + /k2
m2

2 � k22 � i✏
=

m2

E2k

X

⇢,�2

⇢
u⇢
2(k,�2)ū

⇢
2(k,�2)

E2k � ⇢k20 � i✏

‣Project 1CSE onto ρ-spin helicity channels

�+⇢0

��0 (p) ⌘ ū+
1 (p,�)�(p)u

⇢0

2 (p,�0)

‣Work in rest frame of the bound state P = (µ,0)

u+(k,�) ⌘ u(k,�)

u�(k,�) ⌘ v(�k,�)

ρ-spinors with 
helicity λ

The 1CSE becomes a generalized linear 
EV problem for the mass eigenvalues μ +⇢

��0(p) ⌘
r

m1m2

E1pE2p

⇢

E2p � ⇢(E1p � µ)
�+⇢
��0(p)

‣Expand wave functions in a basis of B-splines (modified for correct asymptotic behavior) 
and solve eigenvalue problem → expansion coefficients and mass eigenvalues
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Global fits with fixed quark masses and y=0

mb=4.892, mc=1.600, ms=0.448, mq=0.346 Constituent quark masses (in GeV)

First step: we perform global fits to the heavy + heavy-light meson spectrum

“q” means “light quark”

mu=md=mq

Model parameters not adjusted in the fits:

y = 0Scalar + pseudoscalar confinement

‣Model P1: fitted to 9 pseudoscalar meson masses only

‣Model PSV1: fitted to 25 pseudoscalar, vector, and scalar meson masses

Adjustable model parameters: � ↵s C
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Global fits with fixed quark masses and scalar confinement (y=0)

��

η�(��)

η�(��)

η�(��)

Υ (��)

Υ (��)

Υ (��)
Υ (��)

χ��(��)

χ��(��)
��(��)
χ��(��)

��(��)
χ��(��)

χ�(��)

Υ (��)
��

��

��

��

��

�π

��

�π

η�(��)

η�(��)

�/ψ (��)

ψ (��)
ψ (����)

χ��(��)

χ��(��)

��(��)
χ��(��)

��

��(��)

��� ��*
���(����)�

� �*

��
��

*
��

*(����)
���(����)

�
�*

�- �- �+ �+

�

�

�

�

�

�

�
��
�
(�
��

)

        used in fit

        predicted

Pseudoscalar Vector Scalar Axialvector

Blue: 

model P1 
fitted to 9

0-(P) only

Red: 

model PSV2 
fitted to 25

P+S+V



Excited QCD, Sintra, May 7-13, 2017 Alfred Stadler

Global fits with fixed quark masses and y=0
The reason for the presence of a pseudoscalar compo-

nent is chiral symmetry. Although in general scalar inter-
actions break chiral symmetry, it was shown in [20] that
the CSE with our relativistic linear confining kernel sat-
isfies the axial-vector Ward-Takahashi identity when it is
accompanied by an equal-weight pseudoscalar interaction.
It has also been shown [21, 22] that, in the chiral limit
of vanishing bare quark mass, a massless pion solution of
the CSE emerges, while a finite dressed quark mass is dy-
namically generated by the interaction kernel through a
NJL-type mechanism.

For simplicity, and to establish a reference calculation,
we use fixed instead of dynamical, momentum-dependent
consituent quark masses in this work. For the same reason,
we postpone the inclusion of a running coupling in VOGE

and use a fixed value of ↵s instead.
The 1CSE with quark 1 on its positive-energy mass

shell can be written in manifestly covariant form

�(p̂1, p2) = �
Z

d3k

(2⇡)3
m1

E1k

X

K

VK(p̂1, k̂1)⇥
K(µ)
1

⇥ m1 + /̂k1
2m1

�(k̂1, k2)
m2 + /k2

m2
2 � k22 � i✏

⇥K
2(µ) , (2)

where ⇥K(µ)
i = 1i, �5

i , or �
µ
i , VK(p̂1, k̂1) describes the mo-

mentum dependence of the kernel K, mi is the mass of
quark i, and Eik ⌘

p
m2

i + k

2. A “ˆ” over a momentum
indicates that it is on its positive-energy mass shell.

The kernel functions VK(p̂1, k̂1) in (2) are

VL(p̂1, k̂1) = �8�⇡

"
1

(p̂1 � k̂1)4
� Ep1

m1
(2⇡)3�3(p1 � k1)

⇥
Z

d3k01
(2⇡)3

m1

Ek0
1

1

(p̂1 � k̂01)
4

#
, (3)

VOGE(p̂1, k̂1) = � 4⇡↵s

(p̂1 � k̂1)2
, (4)

VC(p̂1, k̂1) = (2⇡)3
Ek1

m1
C�3(p1 � k1) . (5)

Instead of solving (2) directly for the vertex functions,
we introduce relativistic “wave functions” with definite or-
bital angular momentum, defined as rather complicated
combinations of spinor matrix elements of the vertex func-
tion multiplied by the o↵-shell quark propagator [23]. They
enable us to determine the spectroscopic identity of our
solutions, which is indispensable when comparing to the
measured states. In the nonrelativistic limit, they re-
duce to the familiar Schrödinger wave functions. How-
ever, our relativistic wave functions contain components
not present in nonrelativistic solutions. For example, the
S-waves of our pseudoscalar states couple to small P -waves
(with opposite intrinsic parity) that vanish in the nonrel-
ativistic limit, whereas, for vector mesons, coupled S- and

Table 1: Kernel parameters of models P1 and PSV1. Both models
use the quark masses mb = 4.892 GeV, mc = 1.600 GeV, ms = 0.448
GeV, and mu = md = 0.346 GeV.

Model � [GeV2] ↵s C [GeV]
P1 0.2493 0.3643 0.3491
PSV1 0.2247 0.3614 0.3377

D-waves are accompanied by relativistic singlet and triplet
P -waves.

The 1CSE for the relativistic wave functions can be
written as a generalized linear eigenvalue problem for the
total bound-state mass. We solve this system by expand-
ing the wave functions in a basis of B-splines, as described
in [23, 24]. Special attention is needed to treat the sin-
gularities in the kernel at (p̂1 � k̂1)2 = 0. We apply tech-
niques similar to the ones described in [25] to obtain stable
results. A standard Pauli-Villars regularization is applied
to divergent loop integrations, at the expense of a momen-
tum cut-o↵ parameter ⇤. Our results are quite insensitive
to the exact value of ⇤, and we simply fix it at twice the
heavier quark mass.

We calculated the pseudoscalar, scalar, vector, and
axial-vector meson states that contain at least one heavy
(bottom or charm) quark, and whose mass falls below the
corresponding open-flavor threshold. As exceptions, a few
states slightly above threshold but with very small widths
are considered as well.

The model parameters are the four constituent quark
masses mu = md, ms, mc, and mb, the two coupling
strengths � and ↵s, the constant C, and the mixing param-
eter y. Early results clearly favored pure scalar+pseudoscalar
confinement, so throughout this work we set y = 0.

Figure 2 shows the results of two di↵erent model calcu-
lations with the 1CSE in comparison to the observed me-
son masses. Model P1 was fitted to 9 pseudoscalar states
only, whereas model PSV1 was fitted to the masses of 25
pseudoscalar, scalar, and vector mesons. A solid circle
(square) in Fig. 2 indicates a mass calculated with model
P1 (PSV1) that was used in the fit to the measured masses
(solid lines), whereas the open symbols show predictions of
the respective models. The parameters of the models are
listed in Tab. 1. Fitting the quark masses is much more
time-consuming than fitting the other parameters. There-
fore, we first determined them in preliminary calculations
and then held them fixed in the final fits of �, ↵s and C.
This procedure is certainly good enough for the purpose
of this work.

Figure 2 clearly shows that both models give results in
very good agreement with the experimental meson spec-
trum. It is remarkable that a simple unified model with
global parameters �, ↵s, and C can describe heavy-light
and heavy mesons over such a large range of masses (calcu-
lations in the literature often vary model parameters from
sector to sector).

3

rms differences to experimental masses: 
Model

P1      

PSV1  

Δrms [GeV]

0.036

0.030

The results of the two fits are remarkably similar!

‣Kernel parameters are already well determined through pseudoscalar states (JP = 0-)

Almost 100% L=0, S=0

(S-wave, spin singlet)

h0�|S1 · S2|0�i = �3/4

h0�|L · S|0�i = 0

h0�|S12|0�i = 0 Tensor force vanishes

Spin-orbit force vanishes

Spin-spin force acts in singlet only

Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate 
spin-spin from central force.

‣Good test for a covariant kernel:

But they should be determined through covariance.
Model P1 indeed predicts spin-dependent forces correctly!

Published in: Leitão, Stadler, Peña, Biernat, Phys. Lett. B 764 (2017) 38
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Fits with variable quark masses and confinement (S+PS)-V mixing y

y held fixed, other parameters refitted
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rms difference to fitted masses

In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters. 7

Model � [GeV2] ↵s C [GeV] y mb [GeV] mc [GeV] ms [GeV] mq [GeV] nstatesfit �rms [GeV] �rms [GeV]
P1 0.2493 0.3643 0.3491 0.0000⇤⇤ 4.892⇤⇤ 1.600⇤⇤ 0.4478⇤⇤ 0.3455⇤⇤ 9 0.017 0.037
P1ym� 0.2235 0.3941 0.0591 0.0000 4.768 1.398 0.2547 0.1230 9 0.006 0.041
PSV1 0.2247 0.3614 0.3377 0.0000⇤⇤ 4.892⇤⇤ 1.600⇤⇤ 0.4478⇤⇤ 0.3455⇤⇤ 25 0.028 0.036
PSV1ym 0.1893 0.4126 0.1085 0.2537 4.825 1.470 0.2349 0.1000 25 0.022 0.033
PSV24 0.2017 0.4013 0.1311 0.2677 4.822 1.464 0.2365 0.1000 24 0.018 0.033
PSVA 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493 39 0.030 0.030
PSVAy0 0.2058 0.4172 0.2821 0.0000⇤⇤ 4.917 1.624 0.4616 0.3514 39 0.031 0.031

TABLE II. Summary table of the kernel parameters of the di↵erent fitting models considered in this work. The masses calculated
from the models labelled with the symbols: � , 4, and are depicted in Fig. 2. The number of states used in each fit are
given in the column nstatesfit. �rms indicates the root mean square di↵erence (quantity which is minimized) and �rms is the
root mean square di↵erence referring to all the states written in Table I and include both fitted states and predictions. All
values marked with two asterisks (⇤⇤) were fixed by hand.

C. Study of the parameters

1. Fixing the admixture parameter y

Inspection of Table II indicates that the it is possible
to have similar good fits with distinct values of y. To
study this we performed multiple fts where y was held
fixed and analyse how the obtained �rms evolve as well
as the predicted parameters as a function of y. Our re-
sults for �rms are shown in Fig. 6 for the three di↵erent
sets of data mentioned before: P1 (blue curve), PSV (red
curve) and PSVA (green curve), it is also depicted the
best prediction where y was unscontrained.

For the case where only pseudoscalar states were con-
sidered, the fits clearly prefer y = 0, and so we recast the
prediction of the [? ] where we had set y = 0 initially
due to computational convenience.

For the other two sets, PSV and PSVA, even though
there is a minimum for y two points cannot be ignored:
(i) both minima are very shallow (observe for instance
the di↵erence between PSVA and PSAVAy0 cases) and
(ii) they depend upon the basis of data chosen. This in-
dicates for instance that if one includes other states such
as tensor mesons a new value of y can in principle be
obtained. This insensitivity disables us to identify a pre-
ferred y value. Hopefully when other we would test the
predictive power of this CST kernel to compute other ob-
servables, more knowledge about the Lorentz structure of
the linear confining potential could be gained. For com-
pleteness we also present figures showing the obtained pa-
rameters, in particular for the massesmb, mc,ms (Fig. 7),
as well as the interaction kernel parameters: �, ↵s and
C (Fig. 8).

2. Fixing the heavy masses mb and mc

To study now the relationship between the free pa-
rameters we perform another set of fits, where now the
heavy constituent masses (mb and mc) were systemati-
cally fixed.

!
" "#$ "#% "#& "#'

PSVA

FIG. 10. Figure caption

IV. CONCLUSIONS

(To be completed...)
———————————————————————————————————————

Appendix A: Covariant structure of the meson
vertex functions and spherical tensor basis

Here we give, starting from Eq. (13) for each type of
meson, the relations between the Lorentz-invariant func-
tions in the covariant expansion of the meson vertex func-
tion and the radial wave functions  ⇢

j (k) of partial-wave
components.

1. Covariant structure

a. Spin-0 mesons

The invariant vertex function connecting 2 o↵-shell
quarks with momenta k1 and k2 can be written as for

**parameter held fixed during fit

39 states

25 states

9 states

‣Quality of fits not much improved

‣Best model PSVA has y=0.20, but 

minimum is very shallow

include AV states in fit

{

y and quark masses are not much 
constrained by mass spectrum.
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Mass spectra of heavy and heavy-light mesons
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Bottomonium ground-state wave functions
Model PSVA
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Radial excitations in vector bottomonium
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Importance of relativistic components

Mesons in a Covariant Quark Model Sofia LeitãoISU, February 1, 2017 31

SL et al., (in preparation)Using model PSVA we calculated several ground state wave functions

pseudoscalar

scalar

Ground-state wave functions of model PSVA.
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Importance of relativistic components
Ground-state wave functions of model PSVA.

Mesons in a Covariant Quark Model Sofia LeitãoISU, February 1, 2017 32

SL et al., (in preparation)Using model PSVA we calculated several ground state wave functions

vector

axial vector
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Sensitivity to y
Axial-vector ground-state wave functions of model PSVA.
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Bottomonium

Charmonium

L=1, S=1 χb1 (1++)

L=1, S=0 hb1 (1+-)

L=1, S=1 χc1 (1++)

L=1, S=0 hc1 (1+-)

Triplet becomes ground-state only for larger y 

‣Sign for interesting sensitivity to y in details

‣Need C-symmetric equation to confirm
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Outlook

‣ Calculation of tensor mesons (spin ≥ 2)

‣ Inclusion of running quark-gluon coupling 

‣ Implement charge-conjugation symmetry

‣ Study more constraints on Lorentz structure of confining interaction

‣ Extension of current model to the light-quark sector 

‣ Calculation of self-consistent dynamical quark masses

‣ Calculation of meson decay properties

‣ Calculation of consistent photon-quark current, and then e.m. form factors

‣ Calculation of parton distribution functions

‣ Calculate exotic mesons (quark-antiquark states with exotic JPC)

The results so far are very encouraging, but much work remains to be done:


