PPP News

Danilo Piparo

Good News from CMS

- ► TBufferMerger: allows writing the same tree from multiple threads
- ► In process merging, one single file in output

Production CMSSW Job

POM: PoolOutputModule What CMSSW uses to write out data

20-core AOD-MINIAOD Results

	N
IMT OFF	
IMT ON	РО
IMT ON + TBufferMerger	P

Module	Total Loop Time	Efficiency CPU/Real/ thread	Throughput Events/ Second	RSS	# of AOD stalls	Total AOD stall time
POM	3877	0.337	2.58	6733	9986	65765
POM w/IMT	2053	0.603	4.87	6148	9996	32414
Parallel POM	1079	0.960	9.27	13398	1492	339

4x Throughput

D. Riley (Cornell) — Fall17 Offline and Computing Week — 2017-11-13

Even Better News From PPP

We are not yet done optimising:

- No helper thread but rather buffer merging in tasks (ideas already available: task waking up the thread, open the file for merging in the task ...)
- ► Even more parallelisation phasespace possible with parallel TTree::Fill

... And this is only one of the many results achieved in 2017!

More Good News: We Have A Room

- ≥ 2018: 4-S-30 (for a handful of weeks, 4-S-20)
- Keep current format of the meeting: informative, decisional, topical
- More emphasis on the topical instances: spotlight on PyROOT and Data Parallelism
- Reflect this in the planning and its incarnation in JIRA

The Future of LHC

LHC and Detectors plans: ambitious to say the least

1 EB of data, 0.5 million cores Now LHCb 40x collisions, Alice readout @ 50 KHz Run (starts in 2021 already!!) Ш Atlas/CMS pile-up 60→200, recording 10x evts HL-LHC

My Proposed Directions for 2018

More speed

- ▶ **Demonstrate** accelerator aided HEP data analysis at O(100) threads.
- ► Consolidate accelerator aided HEP Monte Carlo studies at O(100) threads.

More usability

- Focus on ROOT analysis tools, both in C++ and Python
- ► Generate value for HEP specific tasks make our product the most attractive.

More throughput

Engage with the experiments with the goal of maximising throughput of parallel RunIII (and beyond) data processing.

My Proposed Directions for 2018

More speed

- ▶ Demonstrate accelerator aided HEP data analysis at O(100) threads.
- Consolidat

More usability

- Focus on F
- Generate value attractive.

What is <u>your</u> proposal?

O(100) threads.

he most

More through

Engage with the experiments with the goal of maximising throughput of parallel RunlII (and beyond) data processing.