Spectroscopy of ^{81}Zn via one-neutron transfer $^{80}\text{Zn}(d,p)$ using ACTAR TPC

Spokesperson: M. Babo, R. Raabe
on behalf of the ACTAR-TPC collaboration

Local contact: L. Gaffney
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Physics case

- N = 51 isotones: only one neutron above N = 50 shell closure
- Even Z: ground states are $5/2^+$ and the first excited states are $1/2^+$
- Excitation energies reflect the ESPE
- Tensor force drives the evolution of the ESPE
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Physics case

- Systematics on N=51 isotones: emptying of the proton \(fp \) orbitals
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Physics case

- What is the energy of the $1/2^+_1$?
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Physics case

- Does the trend lead to an inversion?
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Physics case

- **Single-particle state** according to (d,p) reaction

 J.S. Thomas, PRC 71, 021302 (2005) and PRC 76, 044302 (2007)

- **Core-coupling** $2^+ \otimes v2d_{5/2}$ according to life-time meas.

 (F. Didierjean – to be published in PRC)

- Which $7/2^+$ is single-particle ($g_{7/2}$)?

![Diagram of energy levels and particle states](image_url)
Experimental method

- Accepted experiment (INTC-P-352)
 - T-REX Si detectors
 - Angular distribution of the protons
 - Between 400-keV and 1-MeV resolution
 - MINIBALL Ge array
 - Detection of the γ-rays with high resolution (\sim 10 keV)
 - Limited by low efficiency for high-energy states ($7/2^+$ @ 2 MeV)
 - E2 transition might be not observed ($T_{1/2} > 10$ ns)
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Experimental set-up

• ACTAR = ACtive TARget
 Ø Gas is used as a target ...
 Ø … and to detect the reaction products.
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Experimental set-up

- **ACTAR = ACtive TARget**
 - Gas is used as a target …
 - … and to detect the reaction products.

- **TPC = Time Projection Chamber**
 - 2D projection on the pads
 - 3rd dimension with e⁻ drift time

Courtesy of B. Mauss and A. L. Laffoley
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Experimental set-up

- **ACTAR = ACtive TARget**
 - Gas is used as a target …
 - … and to detect the reaction products.

- **TPC = Time Projection Chamber**
 - 2D projection on the pads
 - 3rd dimension with e^- drift time

- **High luminosity and angular coverage** (4π)
- **Effective thickness** ~ 10 times higher than solid target but still a good resolution on the vertex.

Courtesy of B. Mauss and A. L. Laffoley
This experiment

- (d,p) transfer reaction in inverse kinematic
 - Protons mostly emitted at backward angles
- Angular distribution of the protons
 - FWHM$_\theta$ \sim 1°
 - Reconstruction of the vertex: FWHM$_Q$-value \sim 200 keV

Inelastic scattering experiments: 58Ni(p,p')58Ni

Courtesy of B. Mauss and A. L. Laffoley
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

This experiment

- (d,p) transfer reaction in inverse kinematic
 - Energy resolution of Si: $\sigma_E \sim 75$ keV
 - 37% of angular coverage

PhD student J. Yang
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

This experiment

- **Excitation energies**
 - Using the E_{Si} (75 keV)
 - Wide angular coverage
 - Separation even if $E^* \sim 100$ keV

Inelastic scattering experiments: 6Li(α,α'6Li

(d,p) with T-REX and solid target: resolution of ~ 400-1000 keV

Courtesy of B. Mauss and A. L. Laffoley
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Beam request

- Secondary beam (TAC)
 - ^{80}Zn: 1.10^4 pps
 - 5% of transmission, 16% of β decay
 - 3×10^3 pps
- Target: D_2 (95%) + CF_4 (5%) @ 1 bar

- Reaction rate (Spec. factor = 0.6)

<table>
<thead>
<tr>
<th>Wave</th>
<th>Cross Section (mb)</th>
<th>Reaction rate (pph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-wave</td>
<td>37.6</td>
<td>400</td>
</tr>
<tr>
<td>d-wave</td>
<td>64.7</td>
<td>690</td>
</tr>
<tr>
<td>g-wave</td>
<td>21.8</td>
<td>230</td>
</tr>
</tbody>
</table>

Courtesy of D. Verney
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Beam request

- **Efficiency**
 - Reconstruction: ~ 90%
 - Si detectors: Ω ~ 37%

- **Reaction rate** (Spec. factor = 0.6)

<table>
<thead>
<tr>
<th></th>
<th>Cross Section (mb)</th>
<th>Reaction rate (pph)</th>
<th>Part. detected (pph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-wave</td>
<td>37.6</td>
<td>400</td>
<td>130</td>
</tr>
<tr>
<td>d-wave</td>
<td>64.7</td>
<td>690</td>
<td>230</td>
</tr>
<tr>
<td>g-wave</td>
<td>21.8</td>
<td>230</td>
<td>75</td>
</tr>
</tbody>
</table>
Spectroscopy of $^{{81}}$Zn via (d,p) reaction using ACTAR TPC

Beam request

- **10 shifts** for $^{{80}}$Zn(d,p)$^{{81}}$Zn with LASER ON

<table>
<thead>
<tr>
<th></th>
<th>Cross Section (mb)</th>
<th>Reaction rate (pph)</th>
<th>Part. detected (pph)</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-wave</td>
<td>37.6</td>
<td>400</td>
<td>130</td>
<td>11 K</td>
</tr>
<tr>
<td>d-wave</td>
<td>64.7</td>
<td>690</td>
<td>230</td>
<td>18 K</td>
</tr>
<tr>
<td>g-wave</td>
<td>21.8</td>
<td>230</td>
<td>75</td>
<td>6 K</td>
</tr>
</tbody>
</table>

- $^{{80}}$Ga will represent ~20% of the beam
- **5 shifts** with LASER OFF
 - No contaminants
- **2 shifts** for the beam and detector tuning

We require a total of **12 shifts**
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Back up slides
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Beam request – TAC feedback

<table>
<thead>
<tr>
<th>INTC-P-904</th>
<th>Actar</th>
<th>21</th>
<th>60Zn</th>
<th>ACTAR</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCx-quartz v1.0-Ta n conv 34 n conv 1.445 targ in DB 1e5/uC requested 2006: UC329, 45%Ga, 20%Rb, 110480Zn/uC UC542 (2015) 80Zn – 1.2E3 /uC (lower estimate Laser on/off beta activity ratio: 1.2) 2016 UC584 ca 5e4/uC 80Zn: no impurities. A yield of 5e4 can be delivered/guaranteed (lower than quoted in the proposal): physics still feasible?</td>
<td>ACTAR needs clearance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00Zn done before A/q=80/21 Rb and Zn mass markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If 3 CMS are ok, then 7MeV/u ok.</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Two times less intensity
- But no contaminants
- Still feasible with 10 shifts
- No shift with LASER OFF ?
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Time line of ACTAR TPC project
Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC

Beam request for $l=4$

<table>
<thead>
<tr>
<th>Cross Section (mb)</th>
<th>Reaction rate (pph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-wave</td>
<td>37.6</td>
</tr>
<tr>
<td>d-wave</td>
<td>64.7</td>
</tr>
<tr>
<td>g-wave</td>
<td>13.4 / 21.8</td>
</tr>
</tbody>
</table>

7/2$^+$ @ 2 MeV is most probable to be a single-part. state, according to F. Didierjean
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Additional setup

- Si thicknesses …
 (12cm of gas mixture included)

We need about 5 mm of Si … or Si + NaI (2cm) (all available)

Ep > 15.7 MeV escapes 1.5 mm of Si
(DSSD of Leuven available soon)

Ep < 6 MeV don’t escape 0.6 mm of Si
(20 detectors of 0.7 mm available)
Spectroscopy of ^{81}Zn via (d,p) reaction using ACTAR TPC

Kinematic lines

![Graph showing energy vs. angle for different states and excitation energies](image)

- $E^* = 100\text{ keV}$
- $E^* = 300\text{ keV}$

KU LEUVEN
Kinematic lines

- Wide range of angles allows to determine the excitation energy
 - If $E^* \sim 100$ keV: forward θ_{lab}
 - If $E^* > 250$ keV: difference above the Si resolution

Spectroscopy of 81Zn via (d,p) reaction using ACTAR TPC