n_TOF Report

Daniela Macina
n_TOF Run Coordinator
CERN
• n_TOF Facility (brief reminder)
• Last experiments in 2016
• Shutdown Activities
• Operation in 2017
• Draft planning 2017-2018
• n_TOF publications in 2016
• Conclusions
The neutron Time Of Flight Facility timeline

1996

- Concept by C. Rubbia
- May 1998
- Proposal submitted

1997

- TARC experiment
- Feasibility: CERN/LHC/98-02+Add

1999

- Construction started

2000

- Commissioning

2001-2004

- Phase I
 - Isotopes Capture: 25
 - Fission: 11

2004-2007

- Problem Investigation

2008

- New Target construction

2009 - 2012

- Phase II
 - Isotopes Capture: 14
 - Fission: 3
 - (n,cp): 2

2010

- Upgrades: Borated-H2O
 - Class-A
 - Second Line

2014

- July

2015

- Phase-3

2015

- EAR2
 - Design and Construction

D. Macina, 55th INTC Meeting, CERN, 8-9 Feb 2017
The neutron Time Of Flight Facility

Spallation Target

EAR1

20 m

185 m
The neutron Time Of Flight Facility: EAR1
The neutron Time Of Flight Facility: EAR2
n_TOF Flux

Wide neutron energy range

Very high instantaneous neutron flux
Measurements last part 2016

EAR1

- **75,157 Gd**
 - 2.4x10^18 pot

- **TAC Com**
 - 1.0x10^18 pot

- **233U**
 - 1.5x10^18 pot

- **Recoil test**
 - 0.5x10^18 pot

- **233U TAC**
 - 4.3x10^18 pot

EAR2

- **16O test**
 - 0.5x10^18 pot

- **26Al**
 - 5.0x10^18 pot

- **μGAS FLUX**
 - 0.5x10^18 pot

- **PPAC FLUX**
 - 0.5x10^18 pot

- **237Np (μGAS)**
 - 2.0x10^18 pot

Dates

- **Wk 27**
- **Wk 28**
- **Wk 29**
- **Wk 30**
- **Wk 31**
- **Wk 32**
- **Wk 33**
- **Wk 34**
- **Wk 35**
- **Wk 36**
- **Wk 37**
- **Wk 38**
- **Wk 39**
- **Wk 40**
- **Wk 41**
- **Wk 42**
- **Wk 43**
- **Wk 44**
- **Wk 45**

Weekdays

- **Mo**
- **Tu**
- **We**
- **Th**
- **Fr**
- **Sa**
- **Su**

No full time beam due to activities in the other area

D. Macina, 55th INTC Meeting, CERN, 8-9 Feb 2017
$^{233}\text{U} (n,\gamma) \& (n,f)$ in EAR1 (fission tagging)

Essential role in Th-U fuel cycle / Gen-IV systems
Challenge: XS ratio $(n,f)/(n,g) \sim 10$

Detector setup
(n,g) with Total Absorption Calorimeter TAC
(n,f) with novel compact fission chamber

Recorded 950 TB of data
Analysis is ongoing

Courtesy M. Bacak
Very limited statistics
Fission chamber response

(n,f)
#protons: 1.5e16

Courtesy M. Bacak
Very limited statistics
Response of 1 BaF2 crystal

Crystal # 29

DRAFT

10^1
10^2
10^3
10^4
10^5
10^6

neutron energy [eV]

counts / 1e12 protons

Beam On U3 Total
Beam On background dummy & absorber
Beam Off U3 + absorber + ambient background
red + green - ambient background

γ from (n,g) + (n,f)

Courtesy M. Bacak
237\text{Np} (n,f) at EAR2 with μMGAS

237\text{Np} potential target of incineration in fast neutron reactors
Discrepancies of $\sim 6\%$ in the fission $\sigma \rightarrow$
- Measure 237\text{Np} (n,f) in EAR1 with PPAC
- Measure 237\text{Np} (n,f) in EAR2 with μMGAS

Detector SetUp

- 235\text{U} & 238\text{U} to use for reference
- One 237\text{Np} sample prepared at IPN-Orsay from the same batch as in the PPAC measurement, in order to cross out discrepancies coming from the sample

Courtesy A. Stamatopoulos
$^{237}\text{Np (n,f)}$ are already quite visible (20% statistics and one ^{237}Np sample)

α background from ^{237}Np decay

Courtesy A. Stamatopoulos
Activities during the EYETS 2016-2017

- Bought additional SP Device digitisers to permanently equip both areas for the most demanding experiments (64 channels per area). New digitisers already at CERN and presently under test
- Refurbishing the rack area in EAR1
- Installation of the new cooling system in EAR2 to keep a constant temperature in the bunker (and rack area) at 20 °C
- Preparation of the SIR course to enter the n_TOF Experimental Areas
n_TOF Operation in 2017

<table>
<thead>
<tr>
<th>Week</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>14</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Tu</td>
<td>16</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>We</td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>Th</td>
<td>22</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Fr</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Sa</td>
<td>25</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td>26</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

29 weeks operation $\rightarrow \sim 1.84 \times 10^{19}$ P.O.T.
<table>
<thead>
<tr>
<th>Area</th>
<th>Proposal</th>
<th>INTC</th>
<th>Comment</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAR1</td>
<td>69,71Ga (n,γ)</td>
<td>P-466</td>
<td>Astrophysics</td>
<td>✓</td>
</tr>
<tr>
<td>EAR1</td>
<td>88Sr (n,γ) and 89Y (n,γ)</td>
<td>P-453</td>
<td>Astrophysics & nuclear technologies</td>
<td>✓</td>
</tr>
<tr>
<td>EAR1</td>
<td>154natGd (n,γ)</td>
<td>P-437</td>
<td>Astrophysics</td>
<td>✓</td>
</tr>
<tr>
<td>EAR1</td>
<td>16O (n,α)</td>
<td>P-430</td>
<td>Basic nuclear physics & nuclear technologies</td>
<td>✓</td>
</tr>
<tr>
<td>EAR1</td>
<td>Recoil test (2nd part)</td>
<td>I-165</td>
<td>Detector development for nuclear physics measurements</td>
<td>✓</td>
</tr>
<tr>
<td>EAR2</td>
<td>244,246Cm</td>
<td>P-469</td>
<td>Nuclear technologies</td>
<td>✓</td>
</tr>
<tr>
<td>EAR1</td>
<td>12C (n,p)</td>
<td>P-488</td>
<td>Basic nuclear physics</td>
<td>Submitted for recommendation</td>
</tr>
<tr>
<td>EAR2</td>
<td>241Am (n,γ)</td>
<td>P-491</td>
<td>Nuclear technologies</td>
<td>Submitted for recommendation</td>
</tr>
<tr>
<td>EAR2</td>
<td>241Am (n,f)</td>
<td>P-492</td>
<td>Nuclear technologies</td>
<td>Submitted for recommendation</td>
</tr>
<tr>
<td>EAR2</td>
<td>Imaging</td>
<td>P-497</td>
<td>Nuclear applications</td>
<td>Submitted for recommendation</td>
</tr>
<tr>
<td>EAR1 &</td>
<td>230Th(n,f)</td>
<td>P-493</td>
<td>Basic nuclear physics & nuclear technologies</td>
<td>Submitted for recommendation</td>
</tr>
<tr>
<td>EAR2</td>
<td>235U(n,f)</td>
<td>I-174</td>
<td>Nuclear technologies</td>
<td>Submitted for recommendation</td>
</tr>
</tbody>
</table>
Peer Reviewed Publications 2016

[130] M. Barbagallo, A. Musumarra, L. Cosentino, and the n_TOF Collaboration,
“The 7Be$(n, \alpha)^4$He reaction and the Cosmological Lithium Problem: measurement of”

[129] F. Gunsing and E. Chiaveri on behalf of the n_TOF Collaboration,
“Neutrons in full flight at CERN’s n_TOF facility,”
CERN Courier, article 64364 (2016).

[128] F. Gunsing, O. Aberle, and the n_TOF Collaboration,
“Nuclear data activities at the n_TOF facility at CERN,”

[127] L. Cosentino, A. Musamarra, M. Barbagallo, and the n_TOF Collaboration,
“Experimental setup and procedure for the measurement of the 7Be(n, α) reaction at n_TOF,”

[126] J. Lerendegui-Maro, S. Lo Meo, C. Guerrero, and The n_TOF Collaboration,
“Geant4 simulation of the n_TOF-EAR2 neutron beam: characteristics and prospects,”

[125] D.L. Pérez Magán, L. Caballero-Ontanaya, C. Domingo-Pardo, and The n_TOF Collaboration,
“First tests of the applicability of g-ray imaging for background discrimination in time-of-flight neutron capture measurements,”

[124] P. Žugec, D. Bosnar, N. Colonna, F. Gunsing, and The n_TOF Collaboration,
“A novel method for estimating the neutron background in measurements of neutron capture reactions,”
n_TOF Publications in 2016

Peer Reviewed Publications 2016

10 publications in 2016
130 since 2002
n_TOF Conference contributions in 2016

6th International Conference on Fission and Properties of Neutron-Rich Nuclei, November 6 - 12, 2016, Sanibel Island, Florida/USA

Fission activities at the CERN n_TOF facility.

Int. Symposium Nuclei in the Cosmos XIV, June 19-24, 2016, Niigata/Japan

Neutron capture cross sections of the s-process branching points 147Pm, 171Tm, and 204Tl;
- A. Musumarra and M. Barbagallo for The n_TOF Collaboration,

The cosmological lithium problem and the measurement of the 7Be(n, α) reaction at n_TOF-CERN;
- G. Tagliente and The n_TOF Collaboration,

Recent results in Nuclear Astrophysics at n_TOF/CERN.

Int. Conference on Nuclear Data for Science and Technology, Sept 11-16, 2016, Brugge/Belgium
- J. Balibrea, E. Mendoza, D. Cano Ott, E. Berthoumieux, C. Guerrero, and The n_TOF Collaboration,

Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF total absorption calorimeter and fission tagging based on micromegas detectors;
- D. Cano-Ott, E. Berthoumieux, C. Guerrero, E. Mendoza, and The n_TOF Collaboration,

Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a fission tagging based on micromegas detectors;
- E. Chiaveri on behalf of The n_TOF Collaboration

The n_TOF facility: neutron beams for challenging future measurements at CERN;

Monte Carlo simulations of the n_TOF lead spallation target with the GEANT4 toolkit: A benchmark study;
- L. Cosentino and The n_TOF Collaboration,

Study of a proton recoil telescope for the measurement of the 235U(n, f) fission cross section relative to n-p scattering at n_TOF;
n_TOF Conference contributions in 2016

- E. Dupont, N. Otsuka, O. Cabellos, and The n_TOF Collaboration,
 Dissemination of data measured at the CERN n_TOF facility;
- C. Guerrero, C. Domingo-Pardo, M.-A. Cortes-Giraldo, S. Heinitz, U. Koester, J. Lerendegui, M. Paul, J.-M. Quesada, D. Schumann, and The n_TOF Collaboration,
 Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics;
- F. Gunsing for The n_TOF Collaboration,
 The measurement programme at the neutron time-of-flight facility n_TOF at CERN;
 High accuracy 234U(n, f) cross section in the resonance energy region;
 New measurement of the 242Pu(n, γ) cross section at n_TOF-EAR1 for MOX fuels;

20 contributions to 3 conferences in 2016

180 since 2001

- C. Massimi, S. Kopecky, and The n_TOF Collaboration,
 Combined 25Mg(n, α) and 25Mg(n, tot) measurements: a step forward in the characterization of the 22Ne(a, n)25Mg neutron source in Red Giant Stars;
- M. Mastromarco, M. Barbagallo, M. J. Vermeulen, on behalf of The n_TOF Collaboration, CERN,
 The 236U(n, γ) cross section measured at the CERN n_TOF facility;
- E. Mendoza, D. Cano-Ott, C. Guerrero, and The n_TOF collaboration,
 Measurement of the 241Am neutron capture cross section at the n_TOF facility at CERN;
- F. Mingrone on behalf of The n_TOF Collaboration,
 High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility;
- M. Sabaté-Gilarte, J. Praena, I. Porras, J.-M. Quesada, and The n_TOF Collaboration,
 The 33S(n, α)30Si cross section measured at n_TOF EAR2 (CERN): from thermal to the resonance energy region;
- A. Stamatopoulos, A. Tsinganis, N. Colonna, R. Vlastou, P. Schillebeeckx, A. Plompen, J. Heyse, M. Kokkoris, M. Barbagallo, M. Calviani, E. Berthoumieux, E. Chiaveri, and The n TOF Collaboration,
 Measurement of the 240Pu(n,f) cross-section at the CERN n_TOF facility: first results from Experimental Area II (EAR-2).
Summary and conclusions

- Data analysis going on full steam on the experiments performed in 2016
- Shutdown activities: well on track to be ready for the 2017 start-up
- A lot of very interesting experiments to be planned and performed before the LS2