Electron capture of 8B into highly excited states in 8Be. INTC: P-482

Spokespersons: T. Nilsson thomas.nilsson@chalmers.se
O. Tengblad olof.tengblad@csic.es
Contact person: R. Lica razvan.lica@cern.ch
Halo Nuclei

- Weakly bound (easy to break-up)
- Easy to polarise (large B(E1) low energy strength)
- Suffer lower Coulomb barrier
- Higher transfer probability

→ good cases to be studied in Reaction experiments

As was done for ^{11}Li, ^{11}Be, ^6He

IS616@HIE-ISOLDE, D. Pietro et.al., Reaction mechanisms in collisions induced by a ^8B beam close to the barrier: effects of halo structure on reaction dynamics

The ^8B proton halo is not as extended as the neutron halos (p-wave & Coulomb barrier)

Reaction experiments; Coulomb dissociation at higher energy, or proton capture on ^7Be, are good at probing the structure at larger distances from the core.

A complementary approach is β-deacy

- In beta decay we probe the complete wave function,
- we are sensitive to the structure at smaller distances,
- we can identify the largest part of the beta-strength
20 years ago: ^6He a 2n halo \rightarrow localized decay in the 2n-halo \rightarrow d + alpha

First observation of beta-delayed deuteron emission
ISOLDE-3: IP-42
24h for 147 coincidencies \rightarrow branching 2.8×10^{-6}

^8B as p-halo nuclei \rightarrow $^7\text{Be} + p$

Here the situation is the opposite: we localize the main strength of the decay to the core and the halo-p constitutes the non-decaying spectator;

$$\mathcal{O} \mid c + h \rangle = \mathcal{O}(\mid c \rangle \mid h \rangle) = (\mathcal{O} \mid c \rangle) \mid h \rangle + c \langle \mathcal{O} \mid h \rangle$$

The decay through the 1^+ level is described by the first term thus the strength can be estimated from the known decay of the ^7Be core nucleus.

T. Nilsson et al., Hyperfine Int. 129 (2000) 67

The region of interest enclosed in violet and the decay products red-rings
The 1^+ at 17.640 MeV accessible only via EC

$E_p = 337$ keV

β^-

β^+

8B: Decay modes

8B Predominantly β^+ decay via 3.03 MeV state \rightarrow 2 alphas

4He \rightarrow 4He

The high-lying, isospin-mixed, 2^+ doublet is allowed \rightarrow 2 alphas

7Li $+$ p
The decay of ^8B into the 16.626 MeV state has been observed several times. The decay (mainly EC) into the 16.922 MeV state, however, was first seen in our JYFL experiment.

Expected ratio of decay rates assuming zero GT strength to T=1 component

$$\frac{r_{16.9}}{r_{16.6}} = 2.4 \times 10^{-2}$$

Consistent with the 5 to 180 events seen

Measurement of the beta-feeding to both members of the 2^+ doublet will allow to determine the Gamow-Teller and Fermi matrix elements of BOTH states for the first time.
β-delayed proton emission

The 1+ at 17.640 MeV accessible only via EC

17.2551
7Li + p
17.640 1+; 1
EC
17.9798 2+; 1
8B

16.0052 2+; 1
8Li
11.4 4+; 0

Spectrum in Anti-coincidence with alphas

Search for 337 keV proton branch

Counts/10 keV

IGISOL data

To look for the 337-keV proton hidden in alpha & beta response is a very challenging task;

Theoretical branching ratio based on the p-halo spectator + 7Be core - decay 2.3×10^{-8}

Experimental upper limit from IGISOL 2.6×10^{-5}

Lacking 3 order of magnitude in sensitivity

The Background is primarily from

- Multiple scattering of beta particles
- Cosmic muons (observed in beam-off run)
The average yield of 8B in the JYFL experiment was 200/s. Recent target development at ISOLDE has succeeded in producing a substantially higher yield:

Online measurements: #513

- Coincidence measurement of α and γ (from β^+ annihilation)
- In addition: β^+ and γ activity with tape station

<table>
<thead>
<tr>
<th>Target</th>
<th>TaF$^+$</th>
<th>TaF$_4^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>#499</td>
<td>0.6 pA</td>
<td>0</td>
</tr>
<tr>
<td>#513</td>
<td>190 nA</td>
<td>1.6 µA</td>
</tr>
</tbody>
</table>

- Yield of 8BF$_2^+$ of 2.8×10^4 1/µC

C. Seiffert, contribution to the ISOLDE workshop 2015

This now allows to tackle the above two challenges in the 8B decay @ ISOLDE
Experimental set-up @ IDS

4x particle ΔE-E telescopes + 1x PAD in the bottom for further β coverage
- ΔE: DSSDs 2x40 μm + 2x60 μm
- E: PADs 1500 μm

Highly segmented 1024 pixels of 3x3 mm
→ high many particle coincidence efficiency, high β-efficiency
Experimental sensitivity (p-branch)

By analyzing the 16N data of IS605 (2016);
- the cosmic background rate is sufficiently low,
- the beta rate in the 40 and 60 micron DSSDs is low
- Using the VETO condition we should reach a few 10^{-7} sensitivity in 6 shifts Not enough! →
The 17.640-MeV state is fed by EC (electron capture) → lack of a coincident charged particle to gate on → rely on other techniques;

1) Thinner Si detector 20 µm → minimize the beta and myon response
2) Thick Si surrounding → Anti-coincidence requirement will cut down unwanted events from the region of interest
3) Add magnetic separation?

- Thin 20 µm Small sized SiSB to reduce the noise level and better energy resolution
- close proximity to the C-foil
- Thick pad detectors acting as anti-coincidence veto
The purpose of this experiment is to determine the beta strength to highly exited states in 8Be;

→ explore the Halo wave function over the full radial range
→ identify the unobserved 8B delayed proton emission

We ask for 15 shifts distributed over 2 runs:

6 shifts: Measurement using DSSD + pad telescopes
Based on the IGISOL data we should observe
~500 decays through the 16.9-MeV member of the 2^+ doublet

Time to analyse the background before the 2nd experiment

9 shifts: Measurement using optimized set-up for detecting the 337 keV proton
to reach a sensitivity of 10^{-8}

Estimated beam time request is based upon an implantation rate of 4.2×10^4 ions/s
(TAC: Yield $3e4$ as BF$^+$, re-use existing target. Beam 1.6 μA Transmission 85%)
Recent β-decay studies by the collaboration

Data taking completed, under analysis

IS605 ^{16}N

IS577 ^{31}Ar

Completed experiment

IS541 ^{11}Be

IS507 $^{20-21}Mg$

IS476 ^{31}Ar

n-halo in beta decay @ ISOLDE

6He: First observation of beta-delayed deuteron emission

17F: Beta-decay to the proton halo state in 17F

11Li: Evidence of a new state in 11Be observed in in the 11Li decay

11Be: 11Be(βp), a quasi-free neutron decay?

Halo-nuclei at ISOLDE
T. Nilsson, G. Nyman and K. Riisager

Journal of Physics G: Nuclear and Particle Physics
ISOLDE Decay Station for decay studies of interest in astrophysics and exotic nuclei
Hans O U Fynbo¹, Oliver Kirsebom² and Olof Tengblad³
https://doi.org/10.1088/1361-6471/aa5e09