QCD
Experimental and theoretical context

Markus Diehl, Jan Pawlowski, Gunar Schnell

PBC Working Group Meeting
CERN, 1-2 March 2017
Scope of this talk

• starting from slides of PBC Kickoff Meeting (Sept. 2016) we have tried to situate the different proposals within a global QCD context

• we will ask critical questions, make suggestions please consider us as friendly critics/critical friends

★ others will ask tough questions later (review panels, management, the broader community), so better be prepared for those

• this is the beginning of a process we are not making final assessments now

• will now go through the various proposals one by one
QCD experiment landscape (selection)
QCD experiment landscape (selection)
This talk: status and recent results; no projections or plans
This talk: status and recent results; no projections or plans

→ talks by E. Aschenauer, V. Burkert
QCD experiment landscape (selection)

This talk: status and recent results; no projections or plans

→ talks by E. Aschenauer, V. Burkert

future EIC: either BNL or JLab
Electron-positron annihilation

• mainly charm and B factories, but also useful for QCD studies, e.g.
 ★ fragmentation functions
 ★ spectroscopy

• BaBar@PEP-II (SLAC): $\sqrt{s} = 10.58$ GeV; until 2008

• Belle(2)@KEKB: $\sqrt{s} = 10.58$ GeV;
 Belle until 2010 accumulated ~ 1 ab$^{-1}$
 Belle2 2017++ to accumulate ~ 50 ab$^{-1}$

• BESIII@BEPC II: up to $\sqrt{s} = 4.6$ GeV with a design luminosity of 10^{33} cm$^{-2}$·s$^{-1}$ (ongoing); acceptance $|\cos\theta|<0.8$
Lepton-nucleon/nucleus scattering

- HERA (until 2007): longitudinally pol. e± (27.6 GeV) unpolarized protons (460/575/820/920 GeV)
 - H1, ZEUS: e±p (√s = 225/251/300/320 GeV)
 - HERMES: HERA e± on long. pol. H, D, ³He; transv. pol. H; unpolarized nuclei (H, D, He, … Kr, Xe)

- Jefferson Lab: longitudinally pol. e⁻ (6 GeV; upgraded to 12 GeV)
 - various experimental halls w/ diff. focus
 - unpol. and polarized nuclear targets
 - hadron structure via exclusive and (semi-)inclusive reactions
 - dedicated hall for spectroscopy
lepton-nucleon scattering @ JLab12

Hall-C
Super High Momentum Spectrometer (SHMS)
unpolarized SIDIS, hadron ID

Hall-B
CLAS12 H,D polarized targets up to 10^{35} cm$^{-2}$ s$^{-1}$
“complete” acceptance, hadron ID

Hall-A
Spectrometer Pair, polarized 3He target
up to to 10^{38} cm$^{-2}$ s$^{-1}$ hadron ID

SOLID 3He, NH$_3$ polarized targets
up to 10^{36} cm$^{-2}$ s$^{-1}$ large acceptance, pion ID

from: M. Contalbrigo @ QCD-N'16
A future Electron-Ion Collider (EIC) - 2025++

- high-luminosity, versatile, polarized (e⁻ and p, d, ³He)
- Peak luminosity 2×10^{34} cm⁻²s⁻¹ for $\sqrt{s} \sim 70$-105 GeV (250 GeV p↑)
- “Low-risk” luminosity ~ 5-9×10^{32} cm⁻²s⁻¹ (BNL)
- 5-10×10^{33} cm⁻²s⁻¹ (JLab)
- 20-~100 (140) GeV variable CoM energy
- large and complementary kinematic coverage
- unpolarized nuclei from ²H to Pb / U
• lumi strongly increases with beam energy
• lumi strongly increases with beam energy
• large kinematic coverage for a wide range of observables
Hadron structure: AFTER and COMPASS++

- understanding structure and dynamics of hadrons at level of quarks and gluons
 - fundamental Lagrangian \(\rightarrow\) physical states
 - remains very active field, many open questions
- many possibilities sketched in presentations at kickoff workshop. Suggestion:
 - identify a few measurements that can support a strong physics case and that may drive the experimental setup
 - for these, make detailed feasibility/performance studies
 - this requires some choices, but will provide focus and considerably ease the task of any review panel
 - further possibilities can always be pointed out (but beware of "laundry lists")
AFTER: possible highlights (1)

- Parton densities at high x
 - current uncertainties very large
 - important input for LHC! (heavy particle production)
 - very little competition:
 JLAB: lower scale Q^2; higher Q^2 accessible at EIC, but potential not yet quantified, even then AFTER might have edge for gluons

- possible measurements: Drell-Yan for quarks? for gluons? open charm?

- intrinsic charm in proton (expected to reside at large x) measurement again open charm?

- for simulations beware: at high x expect soft-gluon resummation to be essential (should increase rates)
AFTER: possible highlights (2)

• nuclear parton densities?
 ★ intrinsic interest: how does nucleus modify partonic structure of nucleon? collective effects?
 ★ important input for heavy-ion collisions
 ★ nuclear targets: reach large x in nucleus; with Pb beam would get low x in nucleus
 ★ measurements? quantitative impact? possible competition from LHC? from EIC?
Drell-Yan: target spin asymmetry

- transverse momentum distribution of partons is shifted in transversely polarised proton (Sivers effect)
 - spin-orbit coupling, sensitive to orbital angular mom.
- effect comes from soft gluon exchange in physical process

\[
\gamma^* \rightarrow \pi \\
\text{SIDIS} \\
\text{Drell-Yan} \\
p \rightarrow p
\]

- definite change of distribution between SIDIS and DY:
 \[f_{\text{Sivers, SIDIS}}(x, k_T) = - f_{\text{Sivers, DY}}(x, k_T) \]
- fundamentally tests our understanding of soft gluon effects on hadron structure

- related: Boer-Mulders shift for transv. quark pol. in unpolar. p
AFTER: possible highlights (3)

★ measurement: Drell-Yan on transversely polarised target

★ detailed recent study arXiv:1702.01546

★ for LHCb setup find wide coverage in x comfortable rates, e.g., with HERMES-like target
HERMES polarized target

- storage cell with atomic-beam source internal to (HERA-e) ring
HERMES polarized target

- storage cell with atomic-beam source internal to (HERA-e) ring
HERMES polarized target

- storage cell with atomic-beam source internal to (HERA-e) ring

- both long./transv. polarization, as well as diff. target gases

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_T</td>
<td>0.851±0.033</td>
<td>0.845±0.028</td>
<td>0.795±0.033</td>
</tr>
<tr>
<td>t</td>
<td>0.7</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>(10^{14} nucl./cm2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOM ($P_T^2 \cdot t$)</td>
<td>0.5</td>
<td>1.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>
HERMES polarized target

- storage cell with atomic-beam source internal to (HERA-e) ring
 - both long./transv. polarization, as well as diff. target gases
 - various unpolarized gases, e.g. high-density end-of-fill runs
Present/future polarized Drell-Yan experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>beam energy (GeV)</th>
<th>(\sqrt{s}) (GeV)</th>
<th>(x^+)</th>
<th>(\mathcal{L}) (cm(^{-2})s(^{-1}))</th>
<th>(\mathcal{P}_{\text{eff}})</th>
<th>(F) (cm(^{-2})s(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER@LHCb</td>
<td>(p + p^\dagger)</td>
<td>7000</td>
<td>115</td>
<td>0.05 (\pm) 0.95</td>
<td>(1 \cdot 10^{33})</td>
<td>80%</td>
<td>(6.4 \cdot 10^{32})</td>
</tr>
<tr>
<td>AFTER@LHCb</td>
<td>(p^+\bar{3}\text{He}^\dagger)</td>
<td>7000</td>
<td>115</td>
<td>0.05 (\pm) 0.95</td>
<td>(2.5 \cdot 10^{32})</td>
<td>23%</td>
<td>(1.4 \cdot 10^{31})</td>
</tr>
<tr>
<td>AFTER@ALICE(\mu)</td>
<td>(p + p^\dagger)</td>
<td>7000</td>
<td>115</td>
<td>0.1 (\pm) 0.3</td>
<td>(2.5 \cdot 10^{31})</td>
<td>80%</td>
<td>(1.6 \cdot 10^{31})</td>
</tr>
<tr>
<td>COMPASS (CERN)</td>
<td>(\pi^\pm + p^\dagger)</td>
<td>190</td>
<td>19</td>
<td>0.18 (\pm) 0.2</td>
<td>(2 \cdot 10^{33})</td>
<td>18%</td>
<td>(6.5 \cdot 10^{31})</td>
</tr>
<tr>
<td>PHENIX/STAR (RHIC)</td>
<td>(p^\dagger + p^\dagger)</td>
<td>collider</td>
<td>510</td>
<td>0.05 (\pm) 0.1</td>
<td>(2 \cdot 10^{32})</td>
<td>50%</td>
<td>(5.0 \cdot 10^{31})</td>
</tr>
<tr>
<td>E1039 (FNAL)</td>
<td>(p + p^\dagger)</td>
<td>120</td>
<td>15</td>
<td>0.1 (\pm) 0.45</td>
<td>(4 \cdot 10^{35})</td>
<td>15%</td>
<td>(9.0 \cdot 10^{33})</td>
</tr>
<tr>
<td>E1027 (FNAL)</td>
<td>(p^\dagger + p)</td>
<td>120</td>
<td>15</td>
<td>0.35 (\pm) 0.9</td>
<td>(2 \cdot 10^{35})</td>
<td>60%</td>
<td>(7.2 \cdot 10^{34})</td>
</tr>
<tr>
<td>NICA (JINR)</td>
<td>(p^\dagger + p)</td>
<td>collider</td>
<td>26</td>
<td>0.1 (\pm) 0.8</td>
<td>(1 \cdot 10^{32})</td>
<td>70%</td>
<td>(4.9 \cdot 10^{31})</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>(p^\dagger + p^\dagger)</td>
<td>collider</td>
<td>200</td>
<td>0.1 (\pm) 0.5</td>
<td>(8 \cdot 10^{31})</td>
<td>60%</td>
<td>(2.9 \cdot 10^{31})</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>(p^\dagger + p^\dagger)</td>
<td>collider</td>
<td>510</td>
<td>0.05 (\pm) 0.6</td>
<td>(6 \cdot 10^{32})</td>
<td>50%</td>
<td>(1.5 \cdot 10^{32})</td>
</tr>
<tr>
<td>PANDA (GSI)</td>
<td>(\bar{p} + p^\dagger)</td>
<td>15</td>
<td>5.5</td>
<td>0.2 (\pm) 0.4</td>
<td>(2 \cdot 10^{32})</td>
<td>20%</td>
<td>(8.0 \cdot 10^{30})</td>
</tr>
</tbody>
</table>

Table 3: Compilation inspired from [17, 56] of the relevant parameters for the future or planned polarised DY experiments. The effective polarisation (\(\mathcal{P}_{\text{eff}}\)) is a beam polarisation (where relevant) or an average polarisation times a (possible) dilution factor (for a gas target, similar to the one developed for HERMES [52, 112, 113]) or a target polarisation times a dilution factor (for the NH\(_3\) target used by COMPASS and E1039). For AFTER@LHC the numbers correspond to a gas target. \(F\) is the (instantaneous) spin figure of merit of the target defined as \(F = \mathcal{P}_{\text{eff}}^2 \times \mathcal{L}\), with \(\mathcal{L}\) being the instantaneous luminosity.
Present/future polarized Drell-Yan experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>beam energy (GeV)</th>
<th>√s (GeV)</th>
<th>x↑</th>
<th>L (cm²s⁻¹)</th>
<th>P_eff</th>
<th>F (cm²s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER@LHCb</td>
<td>p + p↑</td>
<td>7000</td>
<td>115</td>
<td>0.05 ± 0.95</td>
<td>1 · 10³³</td>
<td>80%</td>
<td>6.4 · 10³²</td>
</tr>
<tr>
<td>AFTER@LHCb</td>
<td>p⁺³He↑</td>
<td>7000</td>
<td>115</td>
<td>0.05 ± 0.95</td>
<td>2.5 · 10³²</td>
<td>23%</td>
<td>1.4 · 10³¹</td>
</tr>
<tr>
<td>AFTER@ALICEµ</td>
<td>p + p↑</td>
<td>7000</td>
<td>115</td>
<td>0.1 ± 0.3</td>
<td>2.5 · 10³¹</td>
<td>80%</td>
<td>1.6 · 10³¹</td>
</tr>
<tr>
<td>COMPASS (CERN)</td>
<td>π⁺ + p↑</td>
<td>190</td>
<td>19</td>
<td>0.16 ± 0.3</td>
<td>2 · 10³³</td>
<td>18%</td>
<td>6.5 · 10³¹</td>
</tr>
<tr>
<td>PHENIX/STAR (RHIC)</td>
<td>p↑ + p↑</td>
<td>collider</td>
<td>510</td>
<td>0.05 ± 0.1</td>
<td>2 · 10³²</td>
<td>50%</td>
<td>5.0 · 10³¹</td>
</tr>
<tr>
<td>E1039 (FNAL)</td>
<td>p + p↑</td>
<td>120</td>
<td>15</td>
<td>0.1 ± 0.45</td>
<td>4 · 10³⁵</td>
<td>15%</td>
<td>9.0 · 10³³</td>
</tr>
<tr>
<td>E1027 (FNAL)</td>
<td>p↑ + p</td>
<td>120</td>
<td>15</td>
<td>0.35 ± 0.9</td>
<td>2 · 10³⁵</td>
<td>60%</td>
<td>7.2 · 10³⁴</td>
</tr>
<tr>
<td>NICA (JINR)</td>
<td>p↑ + p</td>
<td>collider</td>
<td>26</td>
<td>0.1 ± 0.8</td>
<td>1 · 10³²</td>
<td>70%</td>
<td>4.9 · 10³¹</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>p↑ + p↑</td>
<td>collider</td>
<td>200</td>
<td>0.1 ± 0.5</td>
<td>8 · 10³¹</td>
<td>60%</td>
<td>2.9 · 10³¹</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>p↑ + p↑</td>
<td>collider</td>
<td>510</td>
<td>0.05 ± 0.6</td>
<td>6 · 10³²</td>
<td>50%</td>
<td>1.5 · 10³²</td>
</tr>
<tr>
<td>PANDA (GSI)</td>
<td>p̅ + p↑</td>
<td>15</td>
<td>5.5</td>
<td>0.2 ± 0.4</td>
<td>2 · 10³²</td>
<td>20%</td>
<td>8.0 · 10³⁰</td>
</tr>
</tbody>
</table>

Table 3: Compilation inspired from [17, 56] of the relevant parameters for the future or planned polarised DY experiments. The effective polarisation (P_eff) is a beam polarisation (where relevant) or an average polarisation times a (possible) dilution factor (for a gas target, similar to the one developed for HERMES [52, 112, 113]) or a target polarisation times a dilution factor (for the NH₃ target used by COMPASS and E1039). For AFTER@LHC the numbers correspond to a gas target. F is the (instantaneous) spin figure of merit of the target defined as \(F = P_{eff}^2 \times L \), with L being the instantaneous luminosity.
Present/future polarized Drell-Yan experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>particles</th>
<th>beam energy (GeV)</th>
<th>\sqrt{s} (GeV)</th>
<th>x^\uparrow</th>
<th>\mathcal{L} (cm$^{-2}$s$^{-1}$)</th>
<th>P_{eff}</th>
<th>\mathcal{F} (cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFTER@LHCb</td>
<td>$p + p^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.05 \div 0.95</td>
<td>1 \times 10^{33}</td>
<td>80%</td>
<td>6.4 \times 10^{32}</td>
</tr>
<tr>
<td>AFTER@LHCb</td>
<td>$p^\uparrow + ^3\text{He}^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.05 \div 0.95</td>
<td>2.5 \times 10^{32}</td>
<td>23%</td>
<td>1.4 \times 10^{31}</td>
</tr>
<tr>
<td>AFTER@ALICEμ</td>
<td>$p + p^\uparrow$</td>
<td>7000</td>
<td>115</td>
<td>0.1 \div 0.3</td>
<td>2.5 \times 10^{31}</td>
<td>80%</td>
<td>1.6 \times 10^{31}</td>
</tr>
<tr>
<td>COMPASS (CERN)</td>
<td>$\pi^\pm + p^\uparrow$</td>
<td>190</td>
<td>19</td>
<td>0.1 \div 0.2</td>
<td>2 \times 10^{33}</td>
<td>18%</td>
<td>6.5 \times 10^{31}</td>
</tr>
<tr>
<td>PHENIX/STAR (RHIC)</td>
<td>$p^\uparrow + p^\uparrow$</td>
<td>collider</td>
<td>510</td>
<td>0.05 \div 0.1</td>
<td>2 \times 10^{32}</td>
<td>50%</td>
<td>5.0 \times 10^{31}</td>
</tr>
<tr>
<td>E1039 (FNAL)</td>
<td>$p + p^\uparrow$</td>
<td>120</td>
<td>15</td>
<td>0.1 \div 0.45</td>
<td>4 \times 10^{35}</td>
<td>15%</td>
<td>9.0 \times 10^{33}</td>
</tr>
<tr>
<td>E1027 (FNAL)</td>
<td>$p^\uparrow + p$</td>
<td>120</td>
<td>15</td>
<td>0.35 \div 0.9</td>
<td>2 \times 10^{35}</td>
<td>60%</td>
<td>7.2 \times 10^{34}</td>
</tr>
<tr>
<td>NICA (JINR)</td>
<td>$p^\uparrow + p$</td>
<td>collider</td>
<td>26</td>
<td>0.1 \div 0.8</td>
<td>1 \times 10^{32}</td>
<td>70%</td>
<td>4.9 \times 10^{31}</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>$p^\uparrow + p^\uparrow$</td>
<td>collider</td>
<td>200</td>
<td>0.1 \div 0.5</td>
<td>8 \times 10^{31}</td>
<td>60%</td>
<td>2.9 \times 10^{31}</td>
</tr>
<tr>
<td>fsPHENIX (RHIC)</td>
<td>$p^\uparrow + p^\uparrow$</td>
<td>collider</td>
<td>510</td>
<td>0.05 \div 0.6</td>
<td>6 \times 10^{32}</td>
<td>50%</td>
<td>1.5 \times 10^{32}</td>
</tr>
<tr>
<td>PANDA (GSI)</td>
<td>$\bar{p} + p^\uparrow$</td>
<td>15</td>
<td>5.5</td>
<td>0.2 \div 0.4</td>
<td>2 \times 10^{32}</td>
<td>20%</td>
<td>8.0 \times 10^{30}</td>
</tr>
</tbody>
</table>

Table 3: Compilation inspired from [17, 56] of the relevant parameters for the future or planned polarised DY experiments. The effective polarisation (P_{eff}) is a beam polarisation (where relevant) or an average polarisation times a (possible) dilution factor (for a gas target, similar to the one developed for HERMES [52, 112, 113]) or a target polarisation times a dilution factor (for the NH$_3$ target used by COMPASS and E1039). For AFTER@LHC the numbers correspond to a gas target. \mathcal{F} is the (instantaneous) spin figure of merit of the target defined as $\mathcal{F} = P_{\text{eff}}^2 \times \mathcal{L}$, with \mathcal{L} being the instantaneous luminosity.
two main fixed-target polarized-DY programs with 120 GeV proton beam of main injector

E-1039 polarized target:

kinematic range $4 < M < 9$ GeV @ $\sqrt{s} = 15$ GeV
luminosity: $3 \cdot 10^{35}$ /cm2/s (NH$_3$)
dilution factor: 0.176 (NH$_3$), 0.3 (ND$_3$)
Polarization <80%, <32%>

$L_{\text{int}} = 1.82 \times 10^{42}$/cm2 NH$_3$ and
2.11×10^{42}/cm2 ND$_3$ for 2 years
mainly sensitive to sea quark Sivers function
two main fixed-target polarized-DY programs with 120 GeV proton beam of main injector

★ E-1039 polarized target:

★ kinematic range $4 < M < 9$ GeV @ $\sqrt{s} = 15$ GeV
luminosity: $3 \cdot 10^{35}$ /cm2/s (NH_3)
dilution factor: 0.176 (NH_3), 0.3 (ND_3)
Polarization $<80\%$, $<32\%$
$L_{\text{int}} = 1.82 \cdot 10^{42}$/cm2 NH_3 and $2.11 \cdot 10^{42}$/cm2 ND_3 for 2 years
mainly sensitive to sea quark Sivers function
Polarized Drell-Yan @ FNAL

- Two main fixed-target polarized-DY programs with 120 GeV proton beam of main injector

★ **E-1027 polarized beam:**

- Kinematic range $4 < M < 9$ GeV @ $\sqrt{s} = 15$ GeV
- Luminosity: $2 \cdot 10^{35} / \text{cm}^2/\text{s} \ (\text{NH}_3)$
- Polarization $<60\%$ no dilution!

- Probes valence-quark Sivers function in DY at high precision
polarized Drell-Yan @FNAL

- two main fixed-target polarized-DY programs with 120 GeV proton beam of main injector

- \textbf{E-1027 polarized beam:}

- kinematic range $4 < M < 9$ GeV @ $\sqrt{s} = 15$ GeV
- luminosity: $2 \cdot 10^{35}$ /cm2/s (NH$_3$)
- polarization $< 60\%$ no dilution!

- probes valence-quark Sivers function in DY at high precision
Drell-Yan @ COMPASS

- 2 years of pion-induced polarized-target DY data by LS2
- substantial increase of precision possible with much more running time or substantial improve in target (can’t really improve polarization, but dilution - currently factor 4-6), → how?
- new beam possibilities discussed: RF-separated hadron beam (1yr data taking)

→ 1% (?) precision on K/π induced DY (integrated over acceptance)
COMPASS++: kaon beams

- Drell-Yan: $K + p \rightarrow \mu^+\mu^- + X$
 - compared with $\pi + p$: parton densities in kaon
 - kaon and pion distributions related by SU(3) flavour symmetry \rightarrow study SU(3) breaking (influence of strange mass)
 - measurement without competition
 - expected size of effects vs. experimental accuracy?
 - strong enough as physics driver?

Estimate in NJL model, arXiv:1604.02853
COMPASS++: antiproton beams

- Drell-Yan with $\bar{p} + p(\text{pol})$

 ★ **strong physics** motivation: see earlier slide

 ★ possible advantage for rates compared with $p+p$:

 \[x_1 x_2 s = Q^2 \text{ gives } x_1 x_2 > 0.01 \]

 \[\rightarrow \text{(anti)quarks in valence region in beam and target} \]

 ★ but: **tough competition** with $p+p$ Drell-Yan proposals
 \[\rightarrow \text{to be worked out quantitatively} \]
selected further Drell-Yan activities

- J-Parc: polarized DY program “in stasis” (30 or even 50 GeV proton beam) “near-term” (2020~), 20 GeV pi- beam fixed-target program possibility for <10 GeV pion/kaon/(anti-)proton beam

- PANDA@FAIR (under construction); 2025++ √s = 5.5 GeV; valence quarks because of anti-proton beam

- SPASCHARM @ IHEP 20xx ? 40-70 (100?) GeV proton beam on (pol.) fixed-target secondary hadron beams & tertiary polarized (anti)protons

- NICA (under construction); 2023++ √s = 26 GeV, but polarized beam uncertain

- fsPHENIX@RHIC (under consideration); 2021++ √s = 200/500 GeV doubly polarized DY possible

Reminder: DY cross section ~1/s ; BG processes increase with s
COMPASS++

RF separated kaon beam $\sim 8 \times 10^6 / s$, beam momentum ~ 100 GeV

What can we contribute as COMPASS?

- State-of-the-art high-resolution spectrometer with full PID
- Advanced analysis techniques being developed in the light-quark sector

Method to be used: Kaon beam diffraction scattering on LH$_2$ and thin nuclear targets

- Goal: ~ 10 larger data sample than existing worldwide
- what would make possible to have similar to pion diffraction
- wave set: 88 waves in 11 t`bins;

- COMPASS could rewrite PDG tables for strange mesons
- Extend studies of chiral dynamics to strange sector

No real competitors

JParc - $\sim 10^5 / s$, low momenta kaons
JLab - $\sim 10^4 / s$, K^0 long beam, lower momenta

- quantitative comparison with competition?
 is high energy essential?

- strange spectroscopy at PANDA?
COMPASS++

RF separated antiproton beam, beam momentum ~ 20 GeV

Method: antiproton-proton annihilation

Goal: charmed hybrids and exotics study in the mass range higher than reachable in PANDA

Complementary to LHCb (p-pbar annihilation – gluon rich environment and it allows high spin states)

Otherwise no competitors for the next at least 10 years

- gain compared with PANDA large enough?
- comparison with LHCb? what is advantage of p+pbar over p+p for producing these states?
• possible extension of muon programme: DVCS
 Deeply Virtual Compton Scattering (μp → μpγ)

• two interfering mechanisms:

• p_T of scattered proton → spatial distributions of quarks/glueons inside proton
 femtometer analogue of Bragg refraction

• under investigation: transverse target polarisation
 ★ related with sum rule for orbital angular momentum
 ★ technically demanding (pol. target with proton recoil det.)
 ★ severe competition from EIC
$\mu-e$

- idea: measurement of $\mu-e$ elastic scattering
 \rightarrow hadronic vacuum pol. contribution to $(g-2)_\mu$

\[\alpha(t) \quad t=q^2<0 \]

- physics motivation:

\[a_\mu^{E821} - a_\mu^{SM} \sim (28 \pm 8) \times 10^{-10} \]

Current discrepancy limited by:
- Experimental uncertainty \rightarrow New experiments at FNAL and J-PARC ×4 accuracy
- Theoretical uncertainty \rightarrow limited by hadronic effects

\[a_\mu^{SM} = a_\mu^{QED} + a_\mu^{HAD} + a_\mu^{Weak} \]

Hadronic Vacuum polarization (HLO)

\[a_\mu^{HLO} = (692.3 \pm 4.2) \times 10^{-10} \]

\[\delta a_\mu / a_\mu \sim 0.6\% \]
determination would be "more direct" than via e^+e^- annihilation data and dispersion relation and complementary to efforts to compute in lattice QCD

- need $O(10^{-5})$ accuracy on s for target precision of 0.3% on a_μ
- uncertainty from unmeasured t region?
- competition? scattering at BES? other muon beams worldwide?
- could this be done with COMPASS?

integral under curve $\rightarrow a_{\text{had}\mu}^{\mu}$

- CERN-SPS: wide range of μ_B coverage & interaction rate

★ complementary to existing/planned experiments: SIS & HADES, BES RHIC

★ High interaction rate (higher than NICA; plot would have to be provided)

★ very interesting proposal: sharpen physics case!
NA60++

- Dilepton thermometer as probe of confinement-deconfinement temperature

\[\propto M^{3/2} e^{-M/T} \]

- Charmonium & open charm

 ★ J/psi anomalous suppression, refined analysis

- Sharpen case for NA60++: (New) physics impact!
NA61++

- **Experimental competition?**

- **Physics case:**
 - Statistical Model vs. dynamical approaches (strong enough?)

QCD Context

PBC Working Group Meeting, March 2017
• DIRAC: pioneering experiment at CERN PS producing $\pi\pi$ and πK atoms and measuring their lifetimes \rightarrow compute $\pi\pi$ and πK scattering lengths

• physics: chiral symmetry breaking in QCD \rightarrow low-energy interactions between π’s and K’s predicted \rightarrow chiral perturbation theory (ChPT)

• lattice computation of low-energy constants: very active field, significant progress

compilation of results in arXiv:1607.00299
DIRAC++

- DIRAC: pioneering experiment at CERN PS producing $\pi\pi$ and πK atoms and measuring their lifetimes \rightarrow compute $\pi\pi$ and πK scattering lengths
- physics: chiral symmetry breaking in QCD \rightarrow low-energy interactions between π's and K's predicted \rightarrow chiral perturbation theory (ChPT)
- DIRAC++ at SPS: would have significantly higher yield for πK atoms \rightarrow measure $|a_{1/2} - a_{3/2}|$ with accuracy below 5%
 ⭐ quantity computed using ChPT/lattice techniques

which impact would this measurement have on the field?
DIRAC++

- in pp sector: could improve existing accuracy on $|a_0 - a_2|$ from $\sim 4\%$ to $\sim 2\%$

- possibility to measure $|2a_0 + a_2|$ with long-lived pp atoms? (observed by DIRAC)

★ quantitative estimates? would probably require different expt'l setup than πK programme

★ expected physics impact?
Baryon magnetic moments

- idea: measure magnetic moments of short-lived baryons Λ_c (udc), possibly also X_c (usc) or X_{cb} (ubc) via spin precession using bent crystal at LHC
 - possibly extend technique to τ lepton?
- physics motivation (for baryons): probe anomalous magnetic moment of c (or b) quark
- physics questions (QCD):
 - how reliably can connect magn. moments of baryon and heavy quark?

<table>
<thead>
<tr>
<th>Baryons</th>
<th>Bag</th>
<th>Nonrel</th>
<th>[15]</th>
<th>[16]</th>
<th>[17]</th>
<th>[20]</th>
<th>[24]</th>
<th>[25]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ_c^+</td>
<td>0.411</td>
<td>0.39</td>
<td>0.40</td>
<td>0.341</td>
<td>0.42</td>
<td>0.37</td>
<td>0.39</td>
<td>0.37</td>
</tr>
<tr>
<td>Σ^0_c</td>
<td>-1.043</td>
<td>-1.37</td>
<td>-1.38</td>
<td>-1.391</td>
<td>-1.04</td>
<td>-1.17</td>
<td>-1.60</td>
<td>-</td>
</tr>
<tr>
<td>Σ^+_c</td>
<td>0.318</td>
<td>0.49</td>
<td>0.49</td>
<td>0.525</td>
<td>0.36</td>
<td>0.63</td>
<td>0.30</td>
<td>-</td>
</tr>
<tr>
<td>Σ^{++}_c</td>
<td>1.679</td>
<td>2.35</td>
<td>2.36</td>
<td>2.44</td>
<td>1.76</td>
<td>2.18</td>
<td>2.20</td>
<td>-</td>
</tr>
<tr>
<td>Ξ^0_c</td>
<td>0.421</td>
<td>0.41</td>
<td>0.41</td>
<td>0.341</td>
<td>0.39</td>
<td>0.36</td>
<td>0.28</td>
<td>0.32</td>
</tr>
<tr>
<td>Ξ^+_c</td>
<td>-0.914</td>
<td>-1.18</td>
<td>-1.12</td>
<td>-1.12</td>
<td>-0.95</td>
<td>-0.93</td>
<td>-1.32</td>
<td>-</td>
</tr>
<tr>
<td>Ξ^{++}_c</td>
<td>0.257</td>
<td>0.20</td>
<td>0.40</td>
<td>0.341</td>
<td>0.41</td>
<td>0.37</td>
<td>0.40</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Baryon magnetic moments

- idea: measure magnetic moments of short-lived baryons Λ_c (udc), possibly also X_c (usc) or X_{cb} (ubc) via spin precession using bent crystal at LHC

★ possibly extend technique to τ lepton?

- physics motivation (for baryons): probe anomalous magnetic moment of c (or b) quark

- physics questions (BSM):
 ★ existing constraints on $(g-2)_c$ or $(g-2)_b$ or $(g-2)_\tau$? e.g. from e^+e^- annihilation?
 ★ estimates on their size from BSM models?
 ➡ achievable experimental precision adequate?