Search for Hidden Particles

K. A. Petridis
on behalf of the SHiP collaboration

University of Bristol

March 2, 2017
The picture of new physics

- Large number of direct searches resulting in no new physics at scales up to $\sim 5\text{TeV}$

- Even more stringent constraints through indirect flavour measurements

- No smoking gun at high energy scales
A Hidden Sector

- New particles are light and interact very weakly with SM particles through portals
 → Provide DM candidate, explain BAU and neutrino masses
 \[\mathcal{L}_{\text{World}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{portal}} + \mathcal{L}_{\text{HS}} \]

- Such particles found in very wide range of theories
 → SUSY, Axion Like Particles, Heavy Neutral Leptons etc
 → Interactions sufficiently weak, evading precision flavour and electroweak constraints
 → Can search through decays to visible SM particles

- Physics proposal including > 80 theorists

- Can also search using decays to invisible particles (DM candidates)
 → Reoptimise \(\nu_{\tau} \) detector

[arXiv:1504.04855]

SHiP will make world-beating and model independent searches in of all of these areas.
Searches for Light Dark Matter

- DM experiments have in general low sensitivity for masses below a few GeV
- Many models predicting DM candidate in this mass range
 - Important to complement with our physics programme

- Light DM models predict a Hidden sector containing a DM candidate
 Searches for Light Dark Matter cont’d

- If the Dark Photons (or other mediators) couple to DM it will not reach the SHiP detector
- However we can detect the DM scattering with electrons in the emulsion detector
- Preliminary study for the TP, we are now optimising the emulsion detector to take into account this physics case

- Mediator of HS decays to DM candidate
 → Invisible to downstream SHiP detector
 → Detect DM through electron scattering in emulsion detector initially designed for ν_τ physics

- Optimising emulsion detector to take into account this physics case

- SHiP has the unique ability to simultaneously search for HS particles including the DM candidate!
Technical Proposal and beyond

- TP reviewed by SPSC and CERN RB and recommended to prepare a Comprehensive Design Study (CDS) by 2018
 → Input to the European strategy consultation in 2019/2020 as a basis for an approval of SHiP

For the CDS: **New phase of optimisation**

- Improve sensitivity to hidden sector searches
 - Re-optimise detector design
- Investigate additional hidden sector models and expand physics case
 - e.g. Dark Photon, SUSY, models with multihadron final states, LDM
Evolution of the design

- Improve sensitivity to variety of HS signals
 - While ensuring still a zero background experiment

Left: TP SHiP, Right: Star-SHiP
Evolution of the design

- Improve sensitivity to variety of HS signals
 - While ensuring still a zero background experiment
 - Respect cost constraints of the TP

Left: TP SHiP, Right: New SHiP

- Magnetise the hadron stopper → shield shorter and lighter
- Lower muon flux entering shield → Decay volume closer to target
 → Increased signal acceptance and reduced muon background
- Simulate support structures and cavern floor and walls

K.A. Petridis (UoB)
Evolution of the design cont’d

- Decay vessel now pyramidal frustum shaped
- Vacuum vessel as baseline option

Other design decisions (CDS and beyond):
- Upstream and Surrounding Background Tagger: liquid or plastic scintillator
- Timing detector: Plastic scintillator or MRPC
- Calorimetry and PID: study e, γ, π, μ separation
 - Crucial to suppress neutrino bkg in $N \rightarrow \ell^+ \ell^- \nu$
 - Study some options with test beam in 2017
- Implementing additional HS models in simulation with variety of final states: e.g multihadrons and diphotons
- Detail study of backgrounds with new design
- Prototyping of all subsystems in place many of which close to “module 0” level
Understanding muon flux and charm production

- Muon shield design depends on the muon spectrum
 - Validate simulation based estimates of muon spectrum after the hadron absorber induced backgrounds

- Understanding the charm production cross section
 - Important in normalising the signal yield and for validating background estimates from high p_T neutrinos
Measuring muon flux

- Expect $6 \times 10^5 \mu/s$ with $p > 100\text{GeV}$, $p_T > 3\text{GeV}$
- PYTHIA simulations result in limited events in above phase space
 - Simulation validated using measurement of flux from CHARM expt.
 - Restricted to low p_T muons and does not cover dangerous part of phase space
- Use beam-tests to improve statistical uncertainty, allowing to test our simulation and use in optimising muon shield

- Find appropriate test beam area for measurement (Collaborate with NA61/SHINE?)
 - Study using simulations
Measuring muon flux cont’d

- Sent EOI to SPSC with proposal based on a NA61/SHINE like detector
 → Install replica SHiP target
 → In order to validate bulk of phase space to $\leq 30\%$ precision need $\sim 10^{11}$ POT
 → 2-3 weeks

- The BDF target WG is re-evaluating the target design which could result to changes to SHiP target
 → Wait for updated design expected summer 2017
 → Aim to collect data by mid 2018 (before CDS report)
Measuring the charm cross section

- Need to know the charm production cross-section in proton interactions, including the contribution from hadronic cascades in the SHiP target
 - Normalisation of HS signals and ν_τ cross-section measurements
 - Validating background estimates from high p_T neutrinos

- Current knowledge of inclusive associated charm cross-section measurement is scarce
 → Missing information:
 - Contribution from charm production through hadron cascades
 - Kinematic distributions of charmed hadrons

![Graph showing charm cross-sections](image)
Measuring the charm cross section II

- Propose to measure double-differential cross-section $d^2\sigma_{cc}/dEd\theta$
- Proton collisions with smaller (10 \times 10 cm2) replica Mo/W target instrumented with nuclear emulsions
- No water cooling required
- Use emulsion as tracking detector to identify hadronic and leptonic charm decay modes

Part of instrumented target ($\sim 1\lambda_I$)

- Each ECC is made by a sequence of 3mm-thick TZM planes interleaved with 290 μm-thick nuclear emulsion films, with a total thickness of $\sim 1\lambda_I$
- ECC1: study charm production in first λ_I
- ECC2: study charm production in second λ_I

K.A. Petridis (UoB)
Measuring the charm cross section III

- Position distribution along beam axis of charm production vertices in the target TZM.

- Ratio between different production modes:
 - \(r(1^{\text{st}}\lambda_I) = \frac{\#\text{Primary}}{\#\text{Secondary}} = 2.7 \)
 - \(r(2^{\text{nd}}\lambda_I) = \frac{\#\text{Primary}}{\#\text{Secondary}} = 0.8 \)

- Fraction of interactions within \(2\lambda_I \):
 - Primary 92%
 - Secondary 66%

- Instrumentation of first and second \(\lambda_I \) allows the study of a large fraction of charmed hadrons.

- Detector design implemented in SHiP’s simulation framework:
 - Study exposure needed to observe 10000 charmed pairs
 - Require \(8 \times 10^7 \) pot and a total of \(250 m^2 \) of emulsion surface

- Possible location H4 where the Goliath magnet could be used

- Wait for updated target design expected summer 2017
Summary

A lot of progress since TP. In the next two years:

- Moving onto CDS and TDR stages
- New detector design which significantly increases HS particle acceptance relative to TP design, while satisfying zero background requirement constraints
 → Reoptimisation under way
 → Extend physics case to DM searches exploiting SHiPs unique design
- Technology decisions to be made with the help of planned test beams
- Detailed plan of measurements to better understand muon flux and charm production

Milestone chart for CDS

<table>
<thead>
<tr>
<th>Milestone</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration 1: Global re-optimization with "current detectors"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iteration 2: Optimization with refined detectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and prototyping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing and updated performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test beam to measure muon spectra, σ_{charm}, etc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design, performance, cost review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write-up</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal | External
Backup
First phase reoptimisation

- Decay Volume
 - Pyramidal frustum shape
 - Vacuum baseline, helium balloon as backup
- Detector options
 - Configurations of the LDM/ν_τ emulsion detector
 - Straw tube technology considered for the upstream muon spectrometer
 - Technologies for Upstream and Surround Background Tagger: Liquid and Plastic scintillator + SiPM
 - Technologies for Timing Detector: Plastic Scintillator/MRPC
 - Revisit completely calorimetry and PID
- First iterations and optimisation implemented in our full simulation
 → Launching complete background simulation
Test beam activities

- **2016**
 - Beam time exploited by straw tracker and BDT plastic scintillator option

- **2017**
 - Joint test beam for Straw Tracker, SBT, CALO on SPS (≈ 2.5 weeks)
 - Emulsion test beam on PS (≈ 2 weeks)
 - Muon system test beam on PS (≈ 2 weeks)

- **2018 and beyond**
 - Likely to have several sub-detector requests as in 2017
 - Tuning of muon spectra
 - Measurement of inclusive charm production