PBC EDM subgroup
Yannis Semertzidis, CAPP/IBS and KAIST

Proton, deuteron, muon, 3He (n-equivalent)

• Storage ring p,d EDMs @ $<10^{-29}$e-cm level
• Probing New Physics $\sim 10^3$-10^4 TeV

• Storage ring EDMs: Great probe of New Physics AND θ_{QCD}
Core members

- Mike Lamont (CERN)
- Gianluigi Arduini (CERN)
- Christian Carli (CERN)
- Mei Bai (Juelich/GSI)
- Klaus Jungman (Groningen)
- YkS (CAPP/IBS & KAIST, Korea)
- Joerg Pretz (Aachen)
- Ed Stephenson (Ind. University)
- Hans Stroeher (Juelich)
- Paolo Lenisa (Ferara)
- Themis Bowcock (Liverpool), TBC
A storage ring experiment to detect a proton electric dipole moment

1Department of Physics, University of Patras, 26500 Rio-Patras, Greece
2Faculty of Applied Mathematics and Control Processes, Saint-Petersburg State University, Saint-Petersburg, Russia
3TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T2A3, Canada
4Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
5Institut für Kernphysik and JARA-Fame, Forschungszentrum Jülich, 52425 Jülich, Germany
6Brookhaven National Laboratory, Upton, New York 11973, USA
7Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
8Department of Physics, University of Liverpool, Liverpool, United Kingdom
9Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
10Physics Department and INFN Section of Genoa, 16146 Genoa, Italy
11Institute of Nuclear and Particle Physics NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece
12Technical University München, Physikdepartment and Excellence-Cluster “Universe,” Garching, Germany
13Center for Axion and Precision Physics Research, Institute for Basic Science (IBS), Daejeon 34141, South Korea
14CEA/Saclay, DAPNIA, 91191 Gif-sur-Yvette Cedex, France
15Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
16University of Ferrara, INFN of Ferrara, Ferrara, Italy
17Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA
18Physics Department, University of INFN Pisa, Pisa, Italy
19Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
Jülich Electric Dipole Moment Investigations

≈ 100 members actual count: 126
(Aachen, Bonn, Daejeon, Dubna, Ferrara, Grenoble, Indiana, Ithaca, Jülich, Krakow, Michigan, Minsk, Novosibirsk, St. Petersburg, Stockholm, Tbilisi, ...)
≈ 10 PhD students

Current spokespersons: Paolo Lenisa (INFN Ferrara), Jörg Pretz (FZJ)
Executive Board, PubCom, Bi-annual Collaboration Mtgs.

http://collaborations.fz-juelich.de/ikp/jedi/
JEDI

COSY at Forschungszentrum Jülich

… the only (operational) test facility for CP EDM
JEDI & srEDM Collaborations

• Two very strong collaborations

Extensive experience in

• Hadronic physics, polarimeters
• Storage rings
• Muon g-2 systematic errors
• Polarized beams
• Beam/spin dynamics

Together: CP EDM
Fundamental particle EDM: study of CP-violation beyond the Standard Model
Proton EDM proposal: $d=10^{-29}e\cdot cm$

- High sensitivity experiment:
- Blowing up the proton to become as large as the sun, the sensitivity to charge separation along N-S would be $r < 0.1 \mu m$!
Why is there so much matter after the Big Bang:

We see:

\[
\frac{n_B}{n} = (6.08 \pm 0.14) \times 10^{-10}
\]

From the SM:

\[
\frac{n_B}{n} = 10^{18}
\]
Storage Ring Electric Dipole Moments

<table>
<thead>
<tr>
<th>Fields</th>
<th>Example</th>
<th>EDM term</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole magnetic field (B)</td>
<td>Muon g-2</td>
<td>Tilt of the spin precession plane. (Limited sensitivity due to spin precession)</td>
<td>Eventually limited by geometrical alignment. Requires CW and CCW injection to eliminate systematic errors</td>
</tr>
</tbody>
</table>
| Combination of electric and magnetic fields (E, B) | Deuteron, 3He, proton, etc. | Mainly: \[
\frac{d\vec{s}}{dt} = \vec{d} \times (\vec{v} \times \vec{B})
\] | Most powerful. Small ring. Need to build combined B and E-field system. Reduce vertical E-field. |
| Radial Electric field (E) | Proton, etc. | \[
\frac{d\vec{s}}{dt} = \vec{d} \times \vec{E}
\] | Large ring, CW & CCW storage. Simplest to achieve. Reduce radial B-field. |
What has been accomplished?

✓ Polarimeter systematic errors (with beams at KVI, and stored beams at COSY).
✓ Precision beam/spin dynamics tracking.
✓ Stable lattice, IBS lifetime: $\sim 10^4$ s (Lebedev, FNAL)
✓ Spin coherence time 10^3 s; role of sextupoles understood (using stored beams at COSY).
✓ Feasibility of required electric field strength >10 MV/m, 3cm plate separation (JLab)
✓ Analytic estimation of electric fringe fields and precision beam/spin dynamics tracking. Stable!
Finishing up

• SQUID-based beam position monitors

• Magnetic field shielding: develop a cost effective mu-metal shielding

• Define the B and E-field specifications (geometrical phases)

• High efficiency precision beam/spin dynamics simulations
In 2014 we have received the P5 endorsement for the proton EDM experiment under all funding scenarios!
Possible candidate particles

• Proton EDM (θ_{QCD}, quark-gluon EDM)
• Deuteron EDM (T-odd nuclear forces)

• 3He (equivalent to nEDM)
• Electron EDM?
• Muon EDM?
Storage ring EDM program

• Proton, Deuteron and neutron (or 3He) together can help pin-point the source of CP-violation should one is found to be non-zero!

• Possible sources: θ_{QCD} or (e.g., SUSY-like) New Physics or (most likely) a combination.

• Which one first? To be decided by the experimental working group. Both is a must!
EDM status

• The EDM experiments are gearing up, getting ready:

• ^{199}Hg EDM $<10^{-29}$ e-cm sensitivity

• nEDM at PSI 10^{-26} e-cm sensitivity, 2015 - 2017

• nEDM at PSI 10^{-27} e-cm sensitivity, 2018 - …

• nEDM at SNS $\sim 2 \times 10^{-28}$ e-cm starting data taking 2021
EDM status (cont’d)

- ThO, current limit on eEDM: 10^{-28} e-cm, next $\times 10$ improvement.

- TUM nEDM effort, making progress in B-field shielding, met B-field specs. It moves to ILL in 2015, goal: 10^{-28} e-cm, staged approach, starting in 2016.

- 225Ra EDM, $\sim 5 \times 10^{-22}$ e-cm now, $\sim 3 \times 10^{-28}$ e-cm w/ FRIB

- Storage ring EDM: p,dEDM goals $\sim 10^{-29}$ e-cm Strength: statistics. Proton w/ upgrade $\sim 10^{-30}$ e-cm
Generic Physics Reach of $d_p \sim 10^{-29} \text{e- cm}$

\[d_p \sim 0.01 \left(\frac{m_p}{\Lambda_{NP}} \right)^2 \tan \phi^{NP} e / 2m_p \]
\[\sim 10^{-22} \left(\frac{1 \text{TeV}}{\Lambda_{NP}} \right)^2 \tan \phi^{NP} e \text{- cm} \]

If ϕ^{NP} is of $O(1)$, $\Lambda_{NP} \sim 3000 \text{TeV}$ Probed!
If $\Lambda_{NP} \sim O(1 \text{TeV})$, $\phi_{NP} \sim 10^{-7}$ Probed!

Unique Capabilities!
Sensitivity to Rule on Several New Models

If found it could explain Baryogenesis (p, d, n, 3He)

Electron EDM new physics reach: 1-3 TeV

Much higher physics reach than LHC; complementary

1st upgrade

Gray: Neutron
Red: Electron

n current
p, d target
e target

Electron EDM new physics reach: 1-3 TeV

Statistics limited

Electron EDM new physics reach: 1-3 TeV

Much higher physics reach than LHC; complementary

Axion mediated long range forces

Together with ARIADNE: test axion physics!

Current nEDM limit

EW CPV phase, $\vartheta \sim 10^{-16}$
Summary

• Storage ring EDM effort is timely.

• Ultimate sensitivity for p,dEDM < 10^{-29} e-cm

• Great probe of New Physics AND θ_{QCD}
Extra slides
The proton EDM ring (alternate gradient)

Straight sections are instrumented with quads, BPMs, polarimeters, injection points, etc, as needed.

Requirements:
Weak vertical focusing (B-field sensitivity)
Below transition (reduce IBS)
Technically driven pEDM timeline

- Research and systems development (R&D); CDR; final ring design, TDR, installation
- CDR by fall of 2018
- Proposal to a lab: fall 2018
Expected reach

PQ Axion f_a in GeV

Experimental Bounds

Astrophysical and Experimental Bounds

Setup in this proposal

$T_\phi = 1$ sec

$T_\phi = 1000$ sec

nEDM Limit: $d_n \sim 3 \times 10^{-26}$ e·cm

pEDM Limit: $d_p \sim 10^{-30}$ e·cm

Force Range in cm
Proton Statistical Error (230MeV):

\[
\sigma_d = \frac{2\hbar}{E_R PA \sqrt{N_c f \tau_p T_{tot}}}
\]

\(\tau_p : 10^3 \text{s}\) Polarization Lifetime (Spin Coherence Time)

\(A : 0.6\) Left/right asymmetry observed by the polarimeter

\(P : 0.8\) Beam polarization

\(N_c : 10^{11} \text{p/cycle}\) Total number of stored particles per cycle

\(T_{tot} : 10^7 \text{s}\) Total running time per year

\(f : 1\%\) Useful event rate fraction (efficiency for EDM)

\(E_R : 7 \text{MV/m}\) Average radial electric field strength

\[\sigma_d = 1.0 \times 10^{-29} \text{ e-cm / year}\]
Electric Dipole Moments in Magnetic Storage Rings

\[\frac{ds}{dt} = \vec{d} \times (\vec{v} \times \vec{B}) \]

E.g. 1 T corresponds to 300 MV/m for relativistic particles

Yannis Semertzidis
Indirect Muon EDM limit from the g-2 Experiment

\[
\vec{\omega} = \frac{e}{m} \left\{ a\vec{B} + \frac{\eta}{2c} \left(\vec{v} \times \vec{B} \right) \right\}
\]

\[
\vec{\omega} = \vec{\omega}_a + \vec{\omega}_{edm}
\]

\[
\tan \theta = \frac{\omega_{edm}}{\omega_a}
\]

Ron McNabb’s Thesis 2003:

\(< 2.7 \times 10^{-19} \text{ e} \cdot \text{cm} \) 95% C.L.

Yannis Semertzidis
The proton EDM ring evaluation Val Lebedev (Fermilab)

Beam intensity 10^{11} protons limited by IBS

<table>
<thead>
<tr>
<th></th>
<th>Soft focusing</th>
<th>Strong focusing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference, m</td>
<td>263</td>
<td>300</td>
</tr>
<tr>
<td>Q_x/Q_y</td>
<td>1.229/0.456</td>
<td>2.32/0.31</td>
</tr>
<tr>
<td>Particle per bunch</td>
<td>1.5-10^8</td>
<td>7·10^8</td>
</tr>
<tr>
<td>Coulomb tune shifts, $\Delta Q_x/\Delta Q_y$</td>
<td>0.0046/0.0066</td>
<td>0.0146/0.0265</td>
</tr>
<tr>
<td>Rms emittances, x/y, norm, μ m</td>
<td>0.56/1.52</td>
<td>0.31/2.16</td>
</tr>
<tr>
<td>Rms momentum spread</td>
<td>1.1·10^{-4}</td>
<td>2.9·10^{-4}</td>
</tr>
<tr>
<td>IBS growth times, x/y/s, s</td>
<td>300/(-1400)/250</td>
<td>7500</td>
</tr>
<tr>
<td>RF voltage, kV</td>
<td>13</td>
<td>10.3</td>
</tr>
<tr>
<td>Synchrotron tune</td>
<td>0.02</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Storage ring proton EDM method

• All-electric storage ring. Strong radial E-field to confine protons with “magic” momentum. The spin vector is aligned with momentum horizontally.

• High intensity, polarized proton beams are injected Clockwise and Counter-clockwise with positive and negative helicities. Great for systematics (e.g., geometrical phases).

• Great statistics: up to $\sim 10^{11}$ particles with primary proton beams and small phase-space parameters.
<table>
<thead>
<tr>
<th>System</th>
<th>Current limit [e cm]</th>
<th>Future goal</th>
<th>Neutron equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron</td>
<td><1.6 × 10^{-26}</td>
<td>~10^{-28}</td>
<td>10^{-28}</td>
</tr>
<tr>
<td>199Hg atom</td>
<td><10^{-29}</td>
<td></td>
<td>10^{-25}-10^{-26}</td>
</tr>
<tr>
<td>129Xe atom</td>
<td><6 × 10^{-27}</td>
<td>~10^{-30}-10^{-33}</td>
<td>10^{-26}-10^{-29}</td>
</tr>
<tr>
<td>Deuteron nucleus</td>
<td></td>
<td>~10^{-29}</td>
<td>3 × 10^{-29}-5 × 10^{-31}</td>
</tr>
<tr>
<td>Proton nucleus</td>
<td><7 × 10^{-25}</td>
<td>~10^{-29}-10^{-30}</td>
<td>10^{-29}-10^{-30}</td>
</tr>
</tbody>
</table>
CP-violation phase from Higgs

EDMs will eventually be discovered: d_e, d_n, d_p... d_D
Magnitudes of ≈ -10^{-28} expected for Baryogenesis
Atomic, Molecular, Neutron, **Storage Ring** (All important)

CP violation phase in: **Hee, H_{\gamma\gamma}, H_{tt}, 2HD Model**...
Uniquely explored by 2 loop edms! Barr-Zee effect
May be our only window to Hee, Huu and Hdd couplings
Guided by experiment: H \rightarrow \gamma\gamma \quad (H \rightarrow \tau^+\tau^-, \mu^+\mu^-) etc.

Updates Anxiously Anticipated!

The Higgs may be central to our existence!
Anomalous magnetic moment factors

\[
\frac{1}{\gamma^2 - 1} - G = 0 \rightarrow \gamma = \sqrt{\frac{1}{G}} + 1
\]

→ \(G > 0 \) for \(\gamma > 1 \), if only electric fields are applied

\[
\gamma = \sqrt{\frac{1}{G}} + 1 \iff p = \frac{m}{\sqrt{G}}
\]

\[
\mu_p / \mu_N = 2.792 \, 847 \, 356 \, (23) \quad \rightarrow \quad G_p = 1.7928473565
\]
\[
\mu_d / \mu_N = 0.857 \, 438 \, 2308 \, (72) \quad \rightarrow \quad G_d = -0.14298727202
\]
\[
\mu_{He-3} / \mu_N = -2.127 \, 497 \, 718 \, (25) \quad \rightarrow \quad G_{3He} = -4.1839627399
\]

Nuclear magneton: \(\mu_N = e\hbar / (2m_p c) = 5.050 \, 783 \, 24 \, (13) \cdot 10^{-27} \, J \, T^{-1} \)

→ Magic momentum for protons: \(p = 700.74 \) MeV/c

→ Deuterons, He-3:

\[
E_r = \frac{GBc\beta\gamma^2}{1 - G\beta^2\gamma^2} \approx GBc\beta\gamma^2
\]