Joint Discussion Session with Theory Institute
“New Physics at the Intensity Frontier”
Three main scientific pillars

Full exploitation of the LHC → over the period of this MTP:
- successful Run 2, LS2, and Run 3 start-up
- construction and installation of LIU; on-track construction of HL-LHC

Scientific diversity programme serving a broad community:
- ongoing experiments and facilities at Booster, PS, SPS and their upgrades (ELENA, HIE-ISOLDE)
- participation in accelerator-based neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform

Preparation of CERN’s future:
- vibrant accelerator R&D programme exploiting CERN’s strengths and uniqueness (including superconducting high-field magnets, AWAKE, etc.)
- design studies for future accelerators: CLIC, FCC (includes HE-LHC)
- future opportunities of diversity programme (new): “Physics Beyond Colliders” Study Group

Important milestone: update of the European Strategy for Particle Physics (ESPP): ~ 2019-2020
→ 10-year view has uncertainties beyond 2020 for part of programme other than LHC upgrade

Fabiola Gianotti SPC May 2016
Ambitious Aims

• Physics Beyond Colliders study to look at CERN’s non-collider options out to 2040

• Explore the opportunities offered by the CERN facilities to address some of today’s outstanding questions in particle physics
Ambitious Aims

• Physics Beyond Colliders study to look at CERN’s non-collider options out to 2040

• Explore the opportunities offered by the CERN facilities to address some of today’s outstanding questions in particle physics

Find New Stuff!!!
Organisation

BSM physics working group
QCD physics working group
PBC-AF committee

BDF working group
EDM working group
Conventional beam working group
Technology working group
LHC FT working group

Proton production study
NuSTORM study
AWAKE++ study
Gamma Factory study
Things to do...

• Already a nice set of proposals!

→ Evaluate physics case in worldwide context
 - Motivation for the searched for physics
 - Sensitivity compared to other existing experiments
 - Complementarities?

→ Can the experiment be improved?
 Synergies between different proposals or existing experiments
New Ideas...

- Always open to new ideas/proposals!
 - Are there “holes” in the existing parameter space that cannot be probed with existing/proposed experiments? Is it possible to close them?
 - Ideas to improve sensitivity?
Questions

• **Fundamental theory questions:**
 – What particles are preferred by extensions of the SM?
 – Do we have preferred mass ranges to target?
 – Are there coupling strengths that are suggested by theory?
More questions

• **Connections:**
 – Are some of the predictions correlated? That is, if we see (or not) particles in one experiment can we say something about the predictions in another experiment?
 – Are there other connections of the type: EDM experiments <-> axion searches?
And even more of them...

• Coherent picture:
 – Can we draw a coherent picture of a landscape where the experiments cover a wide range of fundamental physics questions?
 – In such a picture would it be possible to sketch a coherent global experimental program exploiting the connections above, including a prioritisation of domains to explore?
 – Are there holes in this picture where experiments (or even experimental techniques) are currently lacking?
Not finished yet

• Full exploitation:
 – New ideas to exploit existing or proposed experiments? -
 – Ideas for the improvement of experiments?
Weird idea...

• Database for “old” experiments and their data

• There are many old experiments that have impact on the things we are looking for.

• We want to avoid duplication

• Often theorists looking at those old experiments (do not always really understand the data)

• It’s often hard to get all the required information

Would it make sense to try and collect all this information in a database?

Perhaps do it with “collective memory” wikipedia style
Conclusions

• To be written... by YOU