Motivation

The charged-particle nuclear modification factor in AA collisions, R_{AA}, was found to exhibit a large suppression at both RHIC and the LHC. This magnitude and shape of this suppression contains information about many competing processes in heavy ion collisions: initial state effects, flow effects, the Cronin effect, and jet quenching. In particular, measurements of the high-p_T R_{AA} help constrain models of energy loss in the hot medium created in heavy ion collisions. Similarly, an accurate measurement of the nuclear modification factor in pA collisions, R_{pA}, can help disentangle initial state effects from those caused by the presence of a quark-gluon plasma.

Charged-particle Spectra

- Combine min-bias and triggered data for large p_T reach
- Spectra measured in $|\eta|<1$

![Graph showing CMS R_{AA} at 2.76 TeV (Eur. Phys. J. C 72 (2012) 1945)]

![Graph showing CMS R_{pA}]

For R_{AA}: scale PbPb by T_{AA} and normalize pp by luminosity

- Uncertainty peak at 3 GeV from strange-baryon composition
- pp luminosity uncertainty only 2.3% after VDM scan analysis

Charged-particle R_{AA}

In all 6 centrality bins measured, 5.02 TeV PbPb results are very close to 2.76 TeV results.

![Graph showing CMS R_{AA} at 5.02 TeV vs. 2.76 TeV]

CMS R_{AA} helps constrain models of energy loss in the hot medium created in heavy ion collisions. Similarly, an accurate measurement of the nuclear modification factor in pA collisions, R_{pA}, can help disentangle initial state effects from those caused by the presence of a quark-gluon plasma.

Charged-particle R_{pA}

Using CMS’s existing measured pPb spectrum from [1], we can calculate R_{pA} and compare with R_{AA}. The difference between R_{AA} and R_{pA} indicates the significant suppression seen in R_{AA} is not associated with cold nuclear matter effects.

![Graph showing CMS R_{pA} vs. R_{AA}]

For R_{pA}: scale PbPb by T_{AA} and normalize pp by luminosity

- Uncertainty peak at 3 GeV from strange-baryon composition
- pp luminosity uncertainty only 2.3% after VDM scan analysis