HIGGS DECAYS IN ASSOCIATION WITH MISSING TRANSVERSE ENERGY AT CMS

LAURA MARGARET DODD
UNIVERSITY OF WISCONSIN-MADISON

BACKGROUND
- Existence of DM is well established, not much is known about its underlying.
- Collider searches for dark matter, mainly mono-X searches feature a large amount of missing transverse energy (MET) and the recoiling SM particle the X object γ, j, Z boson, etc.
- In the analysis presented here, the Higgs boson is the SM particle that recoils. This process is examined in the decay channel where the Higgs goes to two taus.
- This is the first search for Mono-Higgs in the di-τ decay channel that CMS has produced.

Cross Sections

<table>
<thead>
<tr>
<th>Zprime \ A0=300 GeV</th>
<th>Cross Section (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>0.45217</td>
</tr>
<tr>
<td>800</td>
<td>0.27765</td>
</tr>
<tr>
<td>1000</td>
<td>0.14383</td>
</tr>
<tr>
<td>1200</td>
<td>0.075451</td>
</tr>
<tr>
<td>1400</td>
<td>0.041208</td>
</tr>
<tr>
<td>1700</td>
<td>0.017786</td>
</tr>
<tr>
<td>2000</td>
<td>0.0082317</td>
</tr>
<tr>
<td>2500</td>
<td>0.0025458</td>
</tr>
</tbody>
</table>

Mono-H→BB
Mono-H → bb split up their search into two main categories:
- **resolved** 2 AK4 jets with $|\eta| < 2.4$ and $p_T > 30$ GeV. MET > 170 GeV.
- **boosted** 1 AK8 jet with $|\eta| < 2.4$ and $p_T > 200$. MET > 200 GeV.

Extra lepton vetos are added.

Figure 2: Resolved Category $H \rightarrow bb$

Mono-H→\tau\tau
How can we look for Mono-H → $\tau\tau$?
- 3 different channels in a Mono-Higgs → $\tau\tau$ search: $\mu\tau$, $e\tau$, and $\tau\tau$.
- Mono-H → $\tau\tau$ is not dependent on a MET Trigger, so the phase space can be extended to lower MET ranges.

Figure 7: in the $H \rightarrow \tau\tau$ system we expect the MET to be reduced due to the presence of neutrinos in the tau decay.

Mono-H→\tau\tau mass reconstruction

Figure 5: The total transverse mass is used for limit extraction. $Z+$Jets peaks near 90 GeV. MET is included in the mass estimation.

Figure 6: The mass of the 125 GeV Higgs cannot be fully reconstructed using the SVFit method used in the Standard Model Analysis. A comparison between the 125 GeV higgs mass and the $Z \rightarrow \tau\tau$ in fig. shows that when using the visible mass as an extraction the $m_{\tau\tau,vis} < 125$ GeV for the 125 GeV boson.

REFERENCES

CMS-PAS-EXO-16-012
HIG-13-004
CMS-PAS-HIG-16-037

FUTURE RESEARCH

Mono-H → $\tau\tau$ analysis in progress on 2016 Data.

CONTACT INFORMATION

Email ldodd@cern.ch