Search for low-mass pair-produced dijet resonances using jet substructure techniques in proton-proton collisions at 13 TeV

CMS-PAS-EXO-16-029

Alejandro Gomez Espinosa (@alefisco)
on behalf of the CMS Collaboration

Rutgers, The State University of New Jersey

Theory Model

- **Hadronic RPV SUSY**
 - Pair production of stop decaying via the UDDσ12 RPV coupling into two light quarks

Physics Motivation

- **Boosted topologies**
 - Exploit current LHC energy to study this boosted signature and probe lower BSM particle masses

Analysis Strategy

- **Search for 2 AK8 jets with high pt and substructure**
 - The average jet mass distribution of the two leading jets using anti-kt jets with cone size R=0.6 is investigated for evidence of a signal consistent with localized deviations from the estimated SM backgrounds

Substructure Techniques

- **Event Selection**
 - **Variable** | **Selection**
 - Number of AK8 jets
 - Leading pT jet: $p_T > 150\text{GeV}$
 - jet $p_T > 2.5$
 - $H_T > 900\text{GeV}$
 - $M_{\text{pruned}} > 0.1$
 - $|\eta_j - \eta_{\text{pruned}}| < 1.5$
 - Isolation2ndjet: $\tau_2 < 0.45$

- **Event Results**
 - CMS Preliminary
 - 2.7 fb$^{-1}$ (13 TeV)
 - Events / 5 GeV

- **Systematic Uncertainties**
 - **Signal:**
 - **Source:**
 - Jet Energy Resolution
 - Jet Mass Resolution
 - Jet Energy Scale
 - Jet Mass Scale
 - MC Statistics
 - MC Resonance
 - Systematic Uncertainties
 - Transfer Factor
 - Fit Uncertainty
 - Systematic in MC Backgrounds
 - **Value:**
 - $\pm 5\%$

- **Background Estimation**
 - **Non-resonant backgrounds (QCD):**
 - ABCD method: use background enriched sidebands to estimate the background in the signal region
 - **Resonant backgrounds:**
 - 5% of total background: t\overline{t}, Wjets, Zjets, dibosons
 - Use MC samples, properly validated

High Level Trigger (HLT)

- We developed an HLT trigger for this search using the pT sum of AK8 jets (HT) and grooming techniques

Signal MC Simulations

- Signal samples were simulated in Madgraph+Pythia
 - On the right, signal shapes are shown after final selection is applied
 - We show the acceptance x efficiency vs. stop mass from the signal MC simulation

Exclusion Limits

- Since no excess is observed in data, we set limits on the production cross section (σ) x branching ratio (B) of stops with the RPV coupling UDDσ12
 - We assume 100% B of stops to light quarks

- CMS Preliminary
 - 2.7 fb$^{-1}$ (13 TeV)
 - 95% CL upper limits
 - Resonance mass [GeV]
 - Yield
 - Expected
 - Observed
 - Limit
 - Expected ± σ

More information: http://cern.ch/go/7gGl