Search for Higgs bosons decaying into $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

Yanlin Liu (Univ. of Michigan & Univ. of Sci. and Tech. of China), for the ATLAS Collaboration

Ref: ATLAS-CONF-2016-041

Introduction

- H$\rightarrow\mu^+\mu^-$ decay mode is rare (branching ratio is only 2.2×10^{-4}), but an important channel to study the Higgs properties
 - Direct measurement of Higgs coupling to the second generation of fermions
 - This decay mode has not been observed yet
- Search in Run 1: using the data with a total integrated luminosity of 24.8 fb$^{-1}$; the observed (expected) upper limit on signal strength $\mu_S(\sigma_{obs}/\sigma_{SM})$ was set at 7.0 (7.2) at 95% C.L.
- With the increased luminosity and center of mass energy at Run 2, there will be much higher sensitivity for this search

Analysis Overview

- Major contributions come from ggF and VBF Higgs production modes; VH mode contribution is small
- Data sample: $L = 13.2$ fb$^{-1}$ recorded at 13 TeV
- Dominant background is Drell-Yan process
- General event selection:
 - Two single μ triggers with $p_T > 24$ for isolated muons or 50 GeV for muons without isolation requirement
 - Leading μ $p_T > 25$ GeV, subleading μ $p_T > 15$ GeV
 - $E_T^{miss} < 80$ GeV; b-jet veto
 - Signal region: $m_{\mu\mu}$ within 110-160 GeV
- Events selected into VBF category if passing dedicated BDT criteria
- Non-VBF events sorted into six other categories based on p_T, ll, and η regions of the muons
- Fit the $m_{\mu\mu}$ spectrum with analytic function to extract signal strength — fully data driven method

Signal and Background Modeling

- Signal model: sum of a Crystal Ball (CB) function and a Gaussian (GS) function
 $$P_S(x) = f \cdot CB(x,m,\sigma_{CB},\alpha,n) + (1-f) \cdot GS(x,m,\sigma_{GS})$$
- Background model: sum of a Breit-Wigner (BW) convolved with a GS and an exponential function divided by x^3
 $$P_B(x) = f \cdot BW(M_{BW},\Gamma_{BW}) \cdot GS(\sigma_{BG}^B)(x) + (1-f) \cdot e^{-x^3}/x^3$$

Discriminant Distributions and Event Yields

- Event yields for expected signal, background and observed data within a window of $120 < m_{\mu\mu} < 130$ GeV

Systematic Uncertainties

- Systematic uncertainty on spurious signal
 - Fit simulated background $m_{\mu\mu}$ distributions to check any potential bias coming from background analytic modeling
 - The impact of background mismodeling on the upper limit on signal strength μ_S is 4% for $m_H = 125$ GeV

Results

- Significant improvement on μ_S for $m_H = 125$ GeV compared with Run 1 result!
- Combining with Run 1 data, the observed (expected) upper limit on μ_S is 3.5 (4.3)