Measurements of electron identification efficiencies with the 2015 & 2016 pp-collision data in ATLAS at \sqrt{s} = 13 TeV

The results presented are from ATL-CONF-2016-024 (https://cds.cern.ch/record/2157687): The ATLAS collaboration, "Electron efficiency measurement with the ATLAS detector using the 2015 LHC proton collision data", June 2016

<u>Objective</u>

- Prompt electrons are identified by a **cluster** in the electromagnetic calorimeter matched to a **track** in the **inner detector**
- Identification via three identification (ID) criteria: loose, medium, tight, defined via Likelihoods based on calorimetric cluster shower shapes, track and track-to-cluster matching variables
- The tighter the ID criteria, the higher the rejection of hadronic jets, electrons from photon conversion, Dalitz decays and from semileptonic heavy-flavour hadron decays but the lower the identification efficiency
- Measure identification efficiency in data and MC
- Measurements provided in bins of the electron transverse momentum and the detector region (pseudorapidity)

The Tag and Probe method

• Total efficiency to measure an electron in the ATLAS detector:

 $J/\psi \rightarrow ee$ (lifetime fit)

 $J/\psi \rightarrow ee$ (lifetime cut)

7 GeV

10 GeV 15 GeV 20 GeV

$$\varepsilon_{total} = \varepsilon_{Reco} * \varepsilon_{ID} * \varepsilon_{Iso} * \varepsilon_{Trigger}$$

• Measure electron identification efficiency with respect to reconstructed electrons:

 $Z \rightarrow ee (m_{ee}$ -based bkg sub)

→ ee (iso-based bkg sub)

$$\epsilon_{{\scriptscriptstyle ID}} = rac{N_{{\scriptscriptstyle reconstructed}}\,{,\,{\scriptscriptstyle passID}}}{N_{{\scriptsize reconstructed}}}$$

- Background in this measurement are objects misidentified as electrons (jets, photons), random combination of two electrons
- Use $Z \rightarrow ee$ or J/ψ decay signature to select a sample of unbiased electrons with high purity

Tag and Probe electron identification efficiency measurements for different electron energy ranges

J/ψ → ee

- Tag and probe di-electron invariant mass as discriminating variable between signal and background
- Analytic fit, signal described using a Crystal Ball function, polynomials used for the background
- Use two methods to discriminate signal from background: Zmass & Zlso

ن 2200 E

- Create background model from data representing shape of the discriminating variable fake electron distribution by requiring objects to fail selected cuts
- Normalize background model to data in background-dominated region

background model

<u>J/ψ → ee decay topology</u> J/ψ events can originate from **prompt production** or **non-prompt** production (B-Hadron decay) Only prompt production is of interest, since it is closest to prompt electron production from other processes of interest (e.g. Higgs decay) Two methods (τ -fit and τ -cut) to **separate prompt** and **non-prompt** components:

Use **pseudo-proper lifetime** (L: distance between primary vertex and J/ ψ vertex, $p_T^{J/\Psi}$: J/ ψ p_{τ})

 $L*m_{PDG}$

• Prompt and non-prompt component distinguished by fitting the τ distribution • Measure data ID efficiency using prompt J/ψ decays

ATLAS Preliminary

 Consider only events with a short lifetime: Cut at τ < 0.2ps to eliminate most non-prompt J/ ψ

<u>τ-Cut</u>

All probes

s = 13 TeV, 3.2 fb⁻¹

 $0.1 < \eta < 0.6$

 $20 \text{ GeV} < E_{T} < 25 \text{ GeV}$

- Data, All Probes

• Use Tag & Probe invariant mass as discriminating variable

• Use **high invariant mass tail** to get the **normalization** of the

- Use probe isolation distribution as discriminating variable
- Use tail of the probe isolation distribution to get the normalization of the background model

Loose probes

Evaluation of the uncertainties & Combination of results:

 Systematic uncertainties assigned for background estimation, bias from kinematic selection (Zmass/Ziso), tag/probe isolation, fit models and pseudo-proper time range (J/ψ) , differences between Zmass/Ziso (τ-Cut/τ-Fit) methods

All methods are in good agreement

Results: Data and MC electron ID efficiency as a function of E_γ and η:

ID efficiencies as a function of the number of vertices:

- Typical identification efficiencies for electrons with E_{τ} = 40 GeV range from 75% to 95% depending on the tightness of the ID criteria
- Measurement precision: 3-15% for very low electron E_{\downarrow} , 0.5-2.5% for medium E_{\downarrow} and 0.5-1% for high E_{\downarrow}
- Identification criteria stable in high pile-up environments
- The data/MC efficiency ratio ($\epsilon_{Data}/\epsilon_{MC}$) is used to obtain the identification efficiency in any process of interest, used to correct MC efficiencies to data
- These results have been used for all ATLAS measurements at 13 TeV with electrons up to now

