Production of muons from heavy-flavour hadron decays in Pb-Pb collisions at v_{NN} = 5.02 TeV with ALICE at the LHC

Zuman ZHANG for the ALICE Collaboration

Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, CCNU, Wuhan, China Laboratoire de Physique de Clermont, CNRS/IN2P3, Clermont-Ferrand, France

LHCC Meeting, 20 Feb - 23 Feb, 2017, CERN

Motivation

Heavy quarks (charm and beauty) in AA collisions

- Produced in initial hard scatterings
- > Experience the full evolution of the medium, interacting with the medium constituents
- > Sensitive probes of the medium properties

Investigate hot nuclear matter effects

- \succ Energy loss in the medium via gluon radiation and elastic collisions: colour-charge and quark-mass dependence
- Participation in the collective expansion of the system

Observables

> Nuclear modification factor R_{AA} : $R_{AA}(p_T) =$

Reaction

Data sample: Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV, 2015 run

Trigger condition: signal in the two V0 arrays (minimum-bias trigger) with

- > at least one muon plus a low- p_T trigger threshold of ~ 1 GeV/c
- (L_{int} ≈ 21.9 µb⁻¹, 0-90% centrality class)
- > at least one muon plus a high- p_{T} trigger threshold of ~ 4.2 GeV/c $(L_{int} \approx 202.3 \ \mu b^{-1}, 0.90\% \text{ centrality class})$

Track selection:

- > -4 < η < -2.5: acceptance of the ALICE muon spectrometer
- > 170° < θ_{abs} < 178°: geometry of the spectrometer
- > muon trigger matching: reject hadrons that cross the absorber
- \succ pointing angle to the vertex via p x DCA in 6 σ : remove beam-gas and particles produced in the absorber

Muon spectrometer (-4 < η < -2.5) :

- > Absorbers: front absorber, beam shield, muon filter
- > Dipole magnet: 3 Tm field integral
- Trigger system: Resistive Plate Chambers
- Tracker system: Multi Wire Proportional Chambers with Cathode Pad Segmentation

V0 (2.8 < η < 5.1, -3.7 < η < -1.7): trigger, centrality determination

ITS ($|\eta|$ < 0.9): vertex determination

ZDC (4.8 < |\eta| < 5.7): rejection of EM interaction, removal of beam-gas interactions

Analysis Strategy

Normalization

> Normalization of muon-trigger event sample to equivalent number of minimum bias events on a run by run basis

Acceptance times efficiency correction

From simulations using NLO pQCD calculation of heavy-flavour signal production as input

Background subtraction

 $\mu \leftarrow \pi$, K (dominant background contribution at low/intermediate p_{T}): \succ Estimate π , K spectra at mid-rapidity in Pb-Pb collisions at 5.02 TeV

 $dN_{AA}^{K,\pi} = dN_{AA}^{ch} = dN_{AA}^{ch} = dN_{AA}^{K,\pi} = dN_{AA}^{K,\pi}$

$$\frac{\mathrm{d}r_{\mathrm{AA},5.02\,\mathrm{feV}}}{\mathrm{d}p_{\mathrm{T}}} = \frac{\mathrm{d}r_{\mathrm{AA},5.02\,\mathrm{feV}}/\mathrm{d}p_{\mathrm{T}}}{\mathrm{d}N_{\mathrm{AA},2.76\,\mathrm{TeV}}^{ch}/\mathrm{d}p_{\mathrm{T}}} \times \frac{\mathrm{d}r_{\mathrm{AA},2.76\,\mathrm{feV}}}{\mathrm{d}p_{\mathrm{T}}}$$

> Then, estimate π , K spectra in Pb–Pb collisions at forward rapidity via

- \succ Centrality dependence of tracking efficiency estimated via embedding procedure, ~6% difference from 60-80% to 0-10% centrality class
- > Systematic uncertainty on misalignment 0.5% x p_{T} (in GeV/c)

pp reference

 $> p_T$ -differential cross section of heavy-flavour decay muons in $3 < p_T < 12$ GeV/c:

 p_{T} -differential cross section of heavy-flavour decay muons at $\sqrt{s} = 7$ TeV measured in $3 < p_T < 12$ GeV/c (PLB 708 (2012) 265) scaled to $\sqrt{s} = 5.02$ TeV with FONLL (M.Cacciari et al., JHEP 10 (2012) 137; R. Averbeck et al., arXiv: 1107.3243)

- $> p_T$ -differential cross section of heavy-flavour decay muons in $12 < p_T < 20$ GeV/c: scaling of FONLL cross section according to ratio between data (extrolated to \sqrt{s} = 5.02 TeV) & FONLL at lower p_{T}
- > Total systematic uncertainty: systematic uncertainty in $3 < p_T < 12$ GeV/c: 9-15% (data and energy scaling), systematic uncertainty in $12 < p_T < 20$ GeV/c: 20-21% (FONLL and fit)

$$\frac{1}{N_{\rm ev}} \frac{{\rm d}^2 N_{\rm AA}^{{\rm K}/\pi}}{{\rm d}p_{\rm T} {\rm d}y} = n_{\rm y} \times \frac{1}{N_{\rm ev}} \frac{{\rm d}N_{\rm AA}^{{\rm K}/\pi}}{{\rm d}p_{\rm T}} |_{|y|<0.8} \times \exp(\frac{-y^2}{2\sigma_{\rm y}^2})$$

- \checkmark with σ_v estimated from PYTHIA and PHOJET (extrapolation of mid-rapidity π , K spectra in pp collisions towards forward rapidity)
- \checkmark varying n_v to estimate the systematic uncertainty on unknown quenching effect at forward rapidity
- \succ Produce the π , K decay muon background in Monte-Carlo with fast simulation taking into account detector properties as previously done (Phys. Rev. Lett. 109 (2012) 112301)
- \succ Contribution: ~16% (10%) in 0-10% (60-80%) centrality class at p_{T} = 3 GeV/c

$\mu \leftarrow W, Z/\gamma * (dominant background contribution at high <math>p_T$):

> Subtraction with templates obtained by combining pp, pn, np, and nn cross sections estimated with POWHEG simulations, properly scaled for Pb-Pb collisions $\frac{\mathrm{d}\sigma_{\mathrm{Pb-Pb}}}{\mathrm{d}p_{\mathrm{T}}} = \frac{Z^{2}}{A^{2}} \times \frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}p_{\mathrm{T}}} + \frac{(A-Z)^{2}}{A^{2}} \times \frac{\mathrm{d}\sigma_{\mathrm{nn}}}{\mathrm{d}p_{\mathrm{T}}} + \frac{Z \cdot (A-Z)}{A^{2}} \left\{ \frac{\mathrm{d}\sigma_{\mathrm{pn}}}{\mathrm{d}p_{\mathrm{T}}} + \frac{\mathrm{d}\sigma_{\mathrm{np}}}{\mathrm{d}p_{\mathrm{T}}} \right\}$ (A = 208, Z = 82)

> Contribution: ~38% (19%) in 0-10% (60-80%) centrality class at $p_{T} = 20 \text{ GeV}/c$

Results

- classes
- Clear increase of the suppression for more central events: about a factor three in 0-10% for 7 < $p_{\rm T}$ < 12 GeV/*c*
- \succ No evident p_{T} dependence within uncertainties for 7 < p_T < 20 GeV/*c*
- > In 7 < p_T < 20 GeV/*c*, beauty contribution is dominant in pp collisions at $\sqrt{s} = 5$ TeV according to FONLL calculations
- > New measurement at $\sqrt{s_{NN}}$ = 5.02 TeV has significantly smaller uncertainties

provide new and stringent constraints on

Vitev: Phys. Rev. C 80 (2009) 054902 TAMU: Phys. Lett. B 735 (2014) 445

Outlook: measurement of heavy-flavour hadron decay muons in pp collisions at $\sqrt{s} = 5.02$ TeV

Funding acknowledgement : This work is supported partly by the National key research and development program of China under Grant No. 2013CB837803 and NSFC Grant No. 11375071, 11475068 and IRG11521064)