Ion backflow and energy resolution in stacks of four GEM detectors for the upgrade of the ALICE TPC Esther Bartsch for the ALICE Collaboration

Motivation for the TPC upgrade

During the LHC Run 3 and 4 period, 2020 and beyond, the interaction rate will be increased to **50 kHz** in Pb-Pb collisions.

Time Projection Chamber (TPC)

ALICE detector setup

Gas Electron Multiplier (GEM)

A GEM consists of a 50 µm thick Kapton foil with a 5 µm thick copper electrode on each side. Inside there are conical holes with a diameter of 50 µm in the Kapton and 70 µm in the copper.

GEM voltage between electrodes \rightarrow high field in holes \rightarrow gas amplification

A stack of several GEM foils reduces the number of back-drifting ions.

Currently a gating grid in the ALICE TPC introduces a dead time of about **300 µs** which leads to a rate limitation of 3.3 kHz. Therefore the multi-wire proportional readout chambers shall be exchanged for a GEM-based readout which allows a continuous readout without gating grid.

GEM test setup

Exploded view of the test chamber

Schematic diagram

Several pitch sizes exist:

- 90 µm in **Small-Pitch** (SP) GEMs
- 140 µm in **Standard** (S) GEMs
- 280 µm in **Large-Pitch** (LP) GEMs

Goal of this investigation

Tunable parameters: - GEM foil types (SP, S, LP) and order - Transfer fields - GEM voltages

Scan of GEM 1 vs GEM 2 voltage

S-LP-S-S GEM configuration

Optimize transfer field settings

 \rightarrow all configurations showed best performance for E_{T1} = E_{T4} = 4000 V/cm

S-LP-LP-S GEM configuration

Energy resolution

S-S-LP-SP GEM configuration

Ion backflow

Energy resolution

Ion backflow

Energy resolution

Comparison of different GEM configurations

Voltage scans of GEM 1 and GEM 2

Gain 2000 by adjusting GEM 3 and GEM 4 voltage (keeping ratio at 0.8)

Gas: Ne-CO₂-N₂ (90-10-5)

Operational point with IBF 0.5-1 % at energy resolution ~12 % was found with various 4-GEM configurations

S-LP-S-S configuration shows the best results

22.02.2017

ebartsch@ikf.uni-frankfurt.de, IKF, Goethe-Universität Frankfurt

13.5

12.5

