Measurement of low-mass dielectrons in pp collisions at $\sqrt{s} = 13$ TeV with ALICE

Ivan Vorobyev* for the ALICE Collaboration

Motivation

Low-mass dielectrons – penetrating probe to study the system created in high-energy heavy-ion collisions
- Produced during all stages of collisions
- Unaffected by strong interactions
- Approximate mass ordering of production time
Proton-proton collisions

Heavy flavour contribution:

New (or heavy-ion like) phenomena in high-multiplicity pp events?
- Production / destruction of ρ mesons, direct photons, …
- Idea: produce a ratio of dielectron spectra in high-multiplicity (HM) over min. bias (MB) triggered events

Experimental Setup

Central barrel detectors (2π coverage, $|\eta| < 0.8$)
- Inner Tracking System
 - Collision vertex reconstruction
 - Tracking
 - Particle Identification
- Time Projector Chamber
- Tracking
- Particle Identification
- Time Of Flight
- Particle Identification

V0 scintillators
- V0A: $2.8 < \eta < 6.1$, V0C: $-3.7 < \eta < -1.7$
- MB trigger: coincidence of V0A & V0C signals
- HM trigger: coincidence of V0A & V0C signals, threshold on V0M amplitude

Pair Analysis

Raw signal normalised by number of events (left), signal / background ratio (middle) and statistical significance (right) in two event classes (HM and MB)
- Clear signs of vector mesons (ω, ϕ, J/ψ)
- Naive expectation: signal is proportional to N_{ch}, combinatorial background grows like N_{ch}^2
- Signal / background ratio is lower for high-multiplicity events
- Statistical significance is comparable in background-dominated mass region

Cocktail Calculations

Cocktail calculations based on preliminary ALICE p_T measurements
- m_T scaling for other hadrons (with asymptotic values fixed to 7 TeV if avail.)
- Include observed modification of p_T spectrum in events with higher charged-particle multiplicities [1]
 - Red curve – lower limit ($\sim 3\times$ in $\langle N_{ch} \rangle$)
 - Red / blue – upper limit ($\sim 6\times$ in $\langle N_{ch} \rangle$)
 - Take into account also p_T-dependent electron efficiency

Heavy flavour contribution:
- PYTHIA simulation of open charm production
- Multiplicity dependent production of D mesons in pp at 7 TeV [2]
 - At N_{ch} ($N_{ch} < 4$ for $2p_{T} > 4$ GeV/c the relative yield increases to $N_{ch} / \langle N_{ch} \rangle = 9.02 \pm 0.57$ (stat) ± 0.47 (syst) ± 1.47 ± 0.5 (feed-down)

\rightarrow Expect $N_{ch}(HM)/N_{ch}(MB) \approx 1 - 2.5$

Results

Ratio of dielectron spectra in high multiplicity over minimum bias events (right - zoomed in low mass region)
- Scaled with multiplicity factor $N_{ch}(HM)/N_{ch}(MB) = 4.36$

In agreement with cocktail expectations everywhere
- m_T mass region: ratio > 1 due to change of hadron p_T spectrum [1]
- Low mass region: more data are needed to investigate the spectrum modification in detail
- Intermediate mass: in agreement with D-meson results at 7 TeV [2]
- Outlook: $>5\times$ more pp data from 2016 will be analysed

References

* Technische Universität München, Excellence Cluster Universe, ivan.vorobyev@cern.ch