CBC3: A CMS micro-strip readout ASIC with logic for track-trigger modules at HL-LHC

STFC RAL: <u>Mark Prydderch</u>, S. Bell, M. Charrier, L. Jones, P.Murray, D. Braga[†] Imperial College: G. Auzinger, J. Borg, G. Hall, M. Pesaresi, M. Raymond, K. Uchida University of Bristol: J. Goldstein, S. Seif El Nasr

†Now at Fermilab

Imperial College London

cience & Technology acilities Council

- Background
- CBC3 Features
- CBC3 Single Chip Testing
- Future work
- Summary & Conclusion

Background

- CBC3 Features
- CBC3 Single Chip Testing
- Future work
- Summary & Conclusion

Where to find the CBC

Basic 2S Module Concept

- High-PT tracks (Stubs) can be identified if cluster centre in top layer lies within a correlation window in R-Φ (rows)
- p_T cut given by: module radius (z), sensor separation and correlation window

CBC1 & CBC2

Common features:

- I²C Interface
- DC DC Converter (2.5V \rightarrow 1.2V)
- LDO for analogue power
- Bandgap for biases
- 256 deep Pipeline
- 40MHz Serial L1 Data Output

mm

CBC1 (2011)

- 128 Dual polarity channels
- Wire Bonded
- APV style serial command scheme
- Analog Test Inputs

CBC2 (2013)

- 254 Dual polarity channels
- C4 Bump Bonded
- Direct command inputs
- On-chip Test Pulse Generator with DLL
- Correlation logic for stub formation
- Cluster width veto
- 40MHz serial readout of Stub Data
- Analogue Mux for bias monitoring
- Front-end circuit improvements
- Improved DC-DC converter (CERN)

• Background

CBC3 Features

- CBC3 Single Chip Testing
- Future work
- Summary & Conclusion

CBC3 Architecture

CBC3 Front End Changes

- Single Polarity (electrons)
- Faster Pulse Shape
- 3x Bias current range for larger detector capacitances
- New preamp regulated cascode to eliminate "Shadow effect" observed when many channels fire
- New postamp feedback bias scheme (not shown)
- Current neutral comparator
- Adjusted for 1V operation

Eliminate common-mode effects observed when many channels fire

Stub Logic

Fast Command Interface

	Fast Com	mand			B7	B6	B5	B4	B3	B2	B1	B0
	Fast Reset				1	1	0	1	0	0	0	1
	Trigger				1	1	0	0	1	0	0	1
	Test Pulse	Test Pulse Trigger			1	1	0	0	0	1	0	1
	Orbit Reset				1	1	0	0	0	0	1	1
	Orbit Rese	et & Fas	t Reset		1	1	0	1	0	0	1	1
	Orbit Rese	et & Trig	gger		1	1	0	0	1	0	1	1
	Orbit Rese	et & Tes	st Pulse	Trigger	1	1	0	0	0	1	1	1
320MI Fast Co In	20MHzClock ast CommandB<7 Input1 Syn		B<5> B<5> D attern	B<4>B<3 X X Fast C	B<2> X	B<1>B< X	0> B<7 L 1 op Syr	B<6> 1 T	B<5>B 0 tern	<4>B<3 X X Fast C	B<2> X	B<1>E X
Reco 40MH Fast Co	overed Iz Clock ommand									-25ns-		

- Background
- CBC3 Features

• CBC3 Single Chip Testing

- Future work
- Summary & Conclusion

Single Chip Test PCB

- Tests carried out at Imperial
- Back-edge column of pads reserved for wafer probing can be wire-bonded

- Additional GND bonds
- All CBC3 results so far are from a wirebonded single chip setup
 - (chips diced from first wafer)
- ~Same setup used for ionizing and SEU tests

Triggered Data Readout

Stub Data Readout

Front End Pulse Shape

We can measure the analogue pulse shapes by sweeping the charge injection time for different comparator thresholds

CBC3 amplifier output 0.6 bm = 1 0.58bm = 8 0.56 om = 15 0.54 S 0.520.50.480.46 0.4480n 100n 120n 140n 160n 180n 200n 220n 240n 260n 280n t(s)

Simulation

- Good pulse shape agreement between simulation and measurement
- CBC3 pulse shape duration reduced (cf. CBC2) to achieve single BX resolution
- Varying 4-bit beta multiplier setting gives some control over output pulse duration

S-curves & Channel Offsets Tuning

- Sweep global comparator threshold to generate s-curves
- Tune offsets to compensate for channel-tochannel differences
- After tuning, the channel offsets distribution has σ of ~50 electrons

VCTH now generated by 10-bit resistor ladder DAC

Noise, Gain & Power

- Single chip test board has provision to bond 8 inputs
- CBC3 bump-bond pads have wirebondable finish (unlike CBC2's C4 pads)
- Can make use of this to inject external charge and add external capacitance to measure noise
- Single-chip setup noise performance looks ok (even with a wire-bonded chip)
- Measured Gain 47 mV/fC with ~5% spread
- 350 μW/Channel Analogue
- 160 µW/Channel Digital

Radiation Studies

Ionising Radiation Tests at CERN:

- CBC3 irradiated to > 400 kGy
- No change in performance (noise, pedestals,...)
- Transient increase in digital current in few Mrad region falls back to pre-irradiation values at higher doses
- Current dominated by leakage in stub-finding logic
- At HL-LHC dose-rate (9 Gy/hr) & temp (-15°) the effect will be negligible (pessimistic assumptions)
 - <u>~1.3%</u> max. increase in module power consumption

SEU Tests on Proton Beam at UCL (Louvain):

- ~15 hours of beam corresponds to ~1000 hours @ HL-LHC
- Detected 25 single bit flips altogether in I²C registers
 - ~ 8x reduction cf. CBC2
- Corresponds to <u>~1.5 bit-flips/day per chip at HL-LHC</u> (pessimistic assumptions)
- Considering periodic reconfiguration vs minor changes to circuit

- Background
- CBC3 Features
- CBC3 Single Chip Testing

- Future work
- Summary & Conclusion

Future Work

- Test the CBC3 2 chip Module
 - Verify performance when bumped
 - Verify nearest neighbour logic for Stubs
- CBC 3.1
 - Add invalid Stub rejection function
 - Add Nearest Neighbour I/O test feature for wafer testing completeness
 - Improve Triggered Data Serialiser robustness to Clock 40 DLL phase shifts
 - Improve configuration register SEU robustness (TBC)
- Manufacture CBC3.1
- Test CBC3.1
- Production Wafers

- Background
- CBC3 Features
- CBC3 Single Chip Testing
- Future work

Summary & Conclusion

Summary & Conclusion

- Successful final full-size prototype of the new Outer Tracker ASIC
- CBC3 working to specification
- Re-designed Stub identification & new output data chain both functional
- Pipeline: Corrected the radiation induced effects seen on CBC2
- Improved SEU performance of configuration registers
- 8 wafers tested with 5 sent to PacTech for bumping
- Some functional modifications needed for the production version

Acknowledgements

 Thank you to all our colleagues at CERN, Bristol (UK), Gdańsk UoT (PL), KIT (DE), IPHC (FR), for their contributions

