The VTRx+, an Optical Link Module for Data Transmission at HL-LHC

Jan Troska, Alexander Brandon-Bravo, Stephane Detraz, Andrea Kraxner, Lauri Olantera, Carmelo Scarcella, Christophe Sigaud, Csaba Soos, Francois Vasey

lpGBT & Versatile Link +

- Front-end to Back-end link targeting Inner Detector use at HL-LHC
 - Tracker-like environment
 - 1 MGy, 3x10¹⁵ n/cm²
 - -35 to +60 °C
 - Asymmetric Data-rates
 - 5 or 10 Gb/s upstream (out of detector)
 - 2.5 Gb/s downstream

On-Detector
Custom Electronics & Packaging
Radiation Hard

Off-Detector
Commercial Off-The-Shelf (COTS)
Custom Protocol

VL+ project collaboration

System Specs

	VTx+ to Rx (10Gbps)	Tx VRx+ (2.5Gbps)	
Tx OMA	> -5.2 dBm	> -1.6 dBm	
Rx sensitivity	< -11.1 dBm	< -13.1 dBm	
Power budget	> 5.9 dB	> 11.5 dB	
Fiber attenuation	< 0.525 dB	< 0.525 dB	
Insertion loss	< 1.5 dB	< 1.5 dB	
Link penalties	< 1.0 dB	< 1.0 dB	
Tx radiation penalty	< 1.0 dB	NA	
Rx radiation penalty	NA	< 5.4 dB	
Fiber radiation penalty	< 1.5 dB	< 1.5 dB	
Margin	> 0.375 dB	> 1.575 dB	

- Link Budget being defined
- Trade-off between requirements at either end of link
 - Penalties are asymmetric
 - Cannot simply apply standard e.g. 10 GbE specs

VTRx+ Module Commercial Module

VL+ module

- Versatile
 - multi-channel, Rx/Tx count usage defined by application
- MM only
 - 850 nm VCSEL
 - InGaAs PIN (TBC)
- Miniaturized
 - Target dimensions 20 x 10 x 2.5/4 mm
- Pluggable
 - Either optical or electrical (or both) connector
- Data-rate matching lpGBT:
 - Tx: 5 and 10 Gb/s
 - Rx: 2.5 Gb/s
- Environment
 - Temperature: -35 to + 60 °C
 - Total Dose: 1 MGy qualification
 - Total Fluence: 1x10¹⁵ n/cm² and 1x10¹⁵ hadrons/cm²

Total Quantity 20000-50000 modules

VTRx+ module flavours & users

- Settled on using optical coupling block that can support up to 4 Tx and 1 Rx
 - Surveyed potential users to gain insight on the required quantities

4Tx & 1 Rx

1Tx & 1 Rx

4Tx

ATLAS TileCal CMS ECAL ATLAS LAr, ITk CMS Tk, HGC, Pix, BTL ATLAS LAr CMS HGC

12%

60%

28%

Approach to VTRx+ prototyping

- Modification of existing commercial modules
 - Working in close collaboration with various industrial partners
 - Typical path
 - Identify interesting part
 - Procure opto-die only variant for environmental testing
 - Insert CERN-specified ASICs (LDD, TIA-LA)

! NDAs ! limit sharing of design details

- In-house design of module
 - Working in close collaboration with suppliers of optical coupling blocks
 - Working in close collaboration with industrial partner on integration
 - CERN-designed PCB
 - CERN-specified or procured opto-die
 - CERN-specified or procured ASICs (LDD, TIA-LA)

CERN-design VTRx+ prototypes

Version	Tx		Rx		Light Coupling	Overetities
Version	LDD	VCSEL	TIA	PD	Block	Quantities
V1	COTS	ULM14G	GBTIA	ULM14G PIN	12ch. MOI	9
V2	COTS	ULM14G	GBTIA	ULM14G PIN	2+2 Lightpeak	10
V3	LDQ10	ULM14G array	GBTIA	ULM14G PIN	12ch. MOI	7
V3b	LDQ10P	ULM/II-VI array	GBTIA	ULM14G PIN	12ch. MOI	5-10
V4	LDQ10	ULM/II-VI array	GBTIA	ULM14G PIN	2+2 Lightpeak	tbc

Sample v3 VTRx+ results

- 10 Gb/s with default settings meets module spec.
 - Good coupling efficiency

- Rx operating with good margin
 - No influence of Tx operation on Rx performance

Commercial roadmap

Step 3

- Development (until 2018)
 - CERN Market Survey
- Original Connector I/F

 Step 0 Step 1 Step 2
- CERN issues Technical Requirement & Questionnaire
- Companies return completed Questionnaire
- CERN reserves the right to order samples (Steps 0, 1) and/or ASIC drop-ins to existing parts for evaluation (Steps 2, 3)
- CERN qualifies companies having required technology
- CERN Price Enquiry
 - Qualified companies receive full technical specification for development
 - Qualified companies bid for development (Step 4)
 - CERN develops customised prototypes with selected company(ies)
- Production (2019 onwards)
 - Companies having successfully completed development (on time, in budget) will be invited to tender for full production
 - One or two lowest cost bidder(s) will receive production contract

Commercial Modules with LDQ10

- LDQ10 integrated into commercial packages with multiple vendors
 - Used to explore setting parameter space to optimise performance

Performance over temperature

- Measured performance over full temperature range
- Either candidate VCSEL may work
- Power Consumption similar

Design challenges

 Largest unique challenge comes from ensuring sufficient voltage headroom for operation of VCSELs with 65 nm CMOS driver that limits voltage rail to 2.5 V

- Going cold and irradiating the VCSEL make the situation worse
 - VCSEL forward voltage increases
- Need some voltage headroom for the driver's output transistor
- Currently validating the margin we have for operation

jan.troska@cern.ch 13

Schedule overview

- Expecting answers to Price Enquiry for development in next two weeks
 - Development slated for 9 months from order placement
- Will then have several possible designs in hand in sufficient quantity for evaluation by user community
- Tendering for volume production will take place during 2019
 - Final module format only known after tendering
- Coupled with IpGBT project for chipset production

Summary

- Versatile Link + project developing Rad-tolerant link for deployment in HL-LHC experiments
 - Operating at 5 or 10 Gb/s Tx and 2.5 Gb/s Rx to match lpGBT
 - Rad tolerant to Tracker levels
- Front-end module development based on
 - In-house design
 - Minimal customisation of commercial module
- Good results achieved with current prototypes
 - Both in-house and commercial designs
 - Understanding of system margins over temperature and after irradiation ongoing
- Challenging to meet smallest height requirement
 - Special development will be required