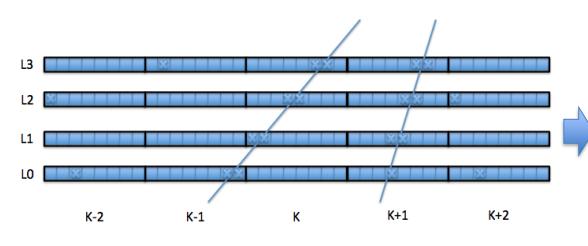


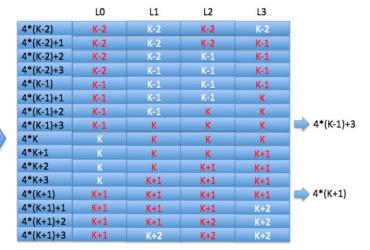
A real-time demonstrator for track reconstruction in the CMS L1 Track-Trigger system based on custom Associative Memories and high-performance FPGAs

Guido Magazzù INFN – Sezione di Pisa

Track Finding & L1 Trigger (1)

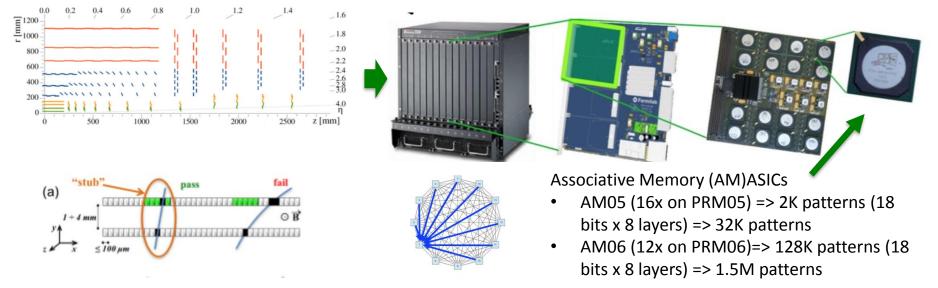
- Luminosity = 5×10³⁴ cm⁻² s⁻¹ => ~ 10⁴ Stubs/BX in Tracker detectors
- <u>L1 Trigger Rate ≤ 1MHz</u>
- L1 Trigger Latency ≤ 12.5us

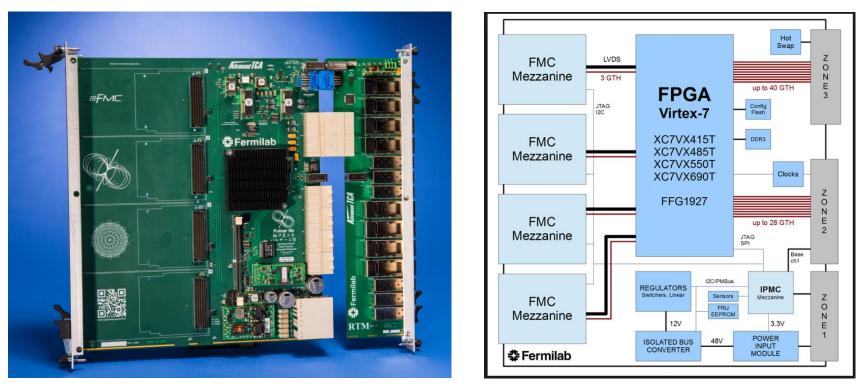

Proposed solution (Track-Trigger)


O(10) data reduction (trigger data) with stub filtering in Pt modules

- Low latency (≤ 4us) track reconstruction with data from the Silicon Trackers
- Detection of high-Pt tracks (Pt ≥ 3GeV => ~ 3% of the tracks) in a real time processor for track-finding based on Associative Memory (AM) ASICs and state-of-the-art FPGAs
- Readout of Front-End data associated to high-Pt tracks only

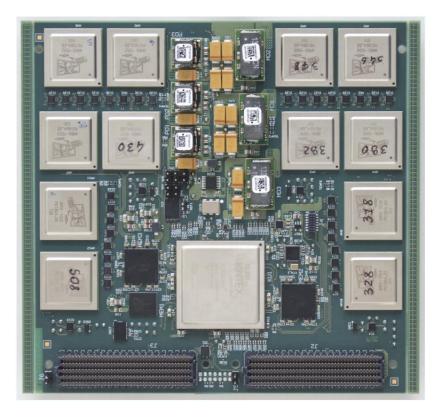
Track Finding & L1 Trigger (2)


- Sensor "strips" are grouped in Super-Strips (e.g. 8 strips in one Super-Strip)
- Pattern banks (one for each port/layer) are pre-loaded in AM ASICs during the configuration phase and they are simultaneously compared with input data (Super-Strips) at run mode
- Each pattern is a configuration of the Super-Strips in the different layers associated to a high-Pt track (i.e. "straight" or "slightly tilted" track)
- When a pattern and the input data match, the pattern address is stored in a data buffer
- When all the Super-Strips associated to the event have been processed, the address of the detected patterns are transmitted back by the AM ASICs

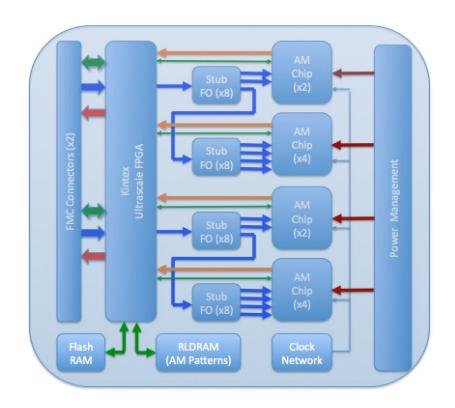


Track-Trigger Architecture

- CMS Silicon Tracker segmented in 48 regions (trigger towers) in η ϕ (pseudo-rapidity and azimuthal angle) 6 in η , 8 in ϕ
- About 100 "Stubs" per bunch crossing received in each layer (6 or 7 depending on η) in each trigger tower
- ATCA boards (Pulsar IIb) collecting data from trigger towers
- Pattern Recognition Mezzanine (PRM) boards (2 PRMs in each Pulsar IIb) performing track finding

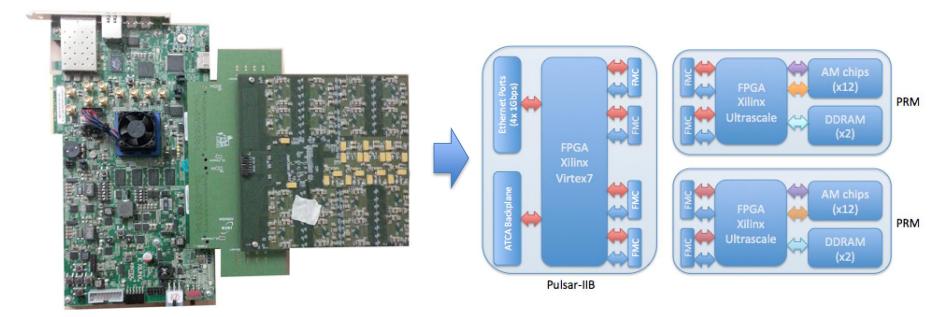


Pulsar IIb Board

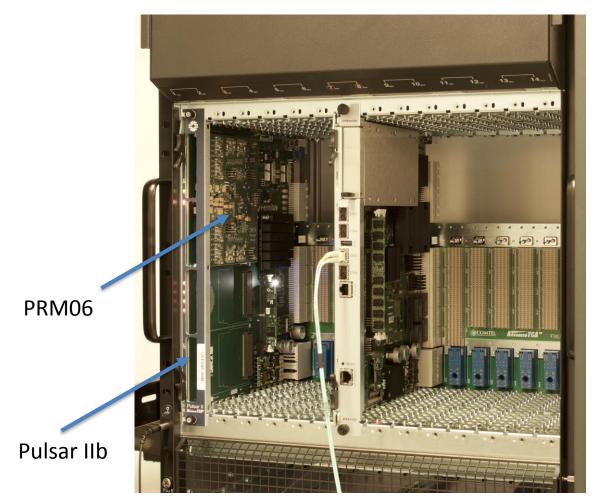


- General purpose ATCA board for DAQ and Trigger (FNAL)
- Xilinx Virtex 7 FPGA
 - 80 GTH transceivers
 - 40 To/From the Rear Transition Module (To/From Optical Transceivers)
 - 28 To/From the ATCA Backplane (To
 - 12 To/From 4 HPC FMC Connectors (To/From PRMs)

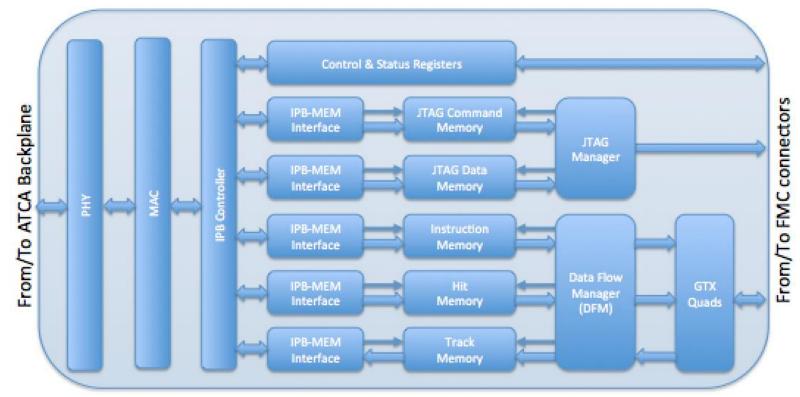
Pattern Recognition Mezzanine (PRM)



- AM06 ASICs (12x, 4 JTAG chains)
- Kintex UltraScale FPGA
- Flash RAM (1x)
- FMC Connectors(2x)


- Pattern Memory (RLDRAM)
- Data Fan-Out Network
- Power Distribution Network
- Clock Distribution Network

Real-Time Demonstrator (1)

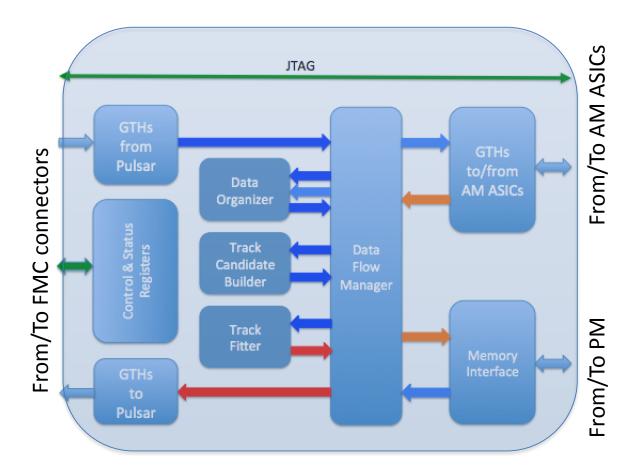

- Two real-time demonstrators has been developed on commercial development boards with FPGAs emulating the Pulsar board
 - Xilinx KCU105 with Kintex Ultra-Scale for the PRM05
 - HTG-V5-PCIE with Virtex-6 FPGA for the PRM06
- These demonstrators have been used for the test and characterization of the PRM boards and for the validation of the firmware implementing the the data flow management to/from the AM ASICs and the track fitting algorithms
- We then moved to the Pulsar IIb / PRM06 final demonstrator

Real Time Demonstrator (2)

Pulsar IIb – PRM06 Test Bench (INFN Pisa & CERN)

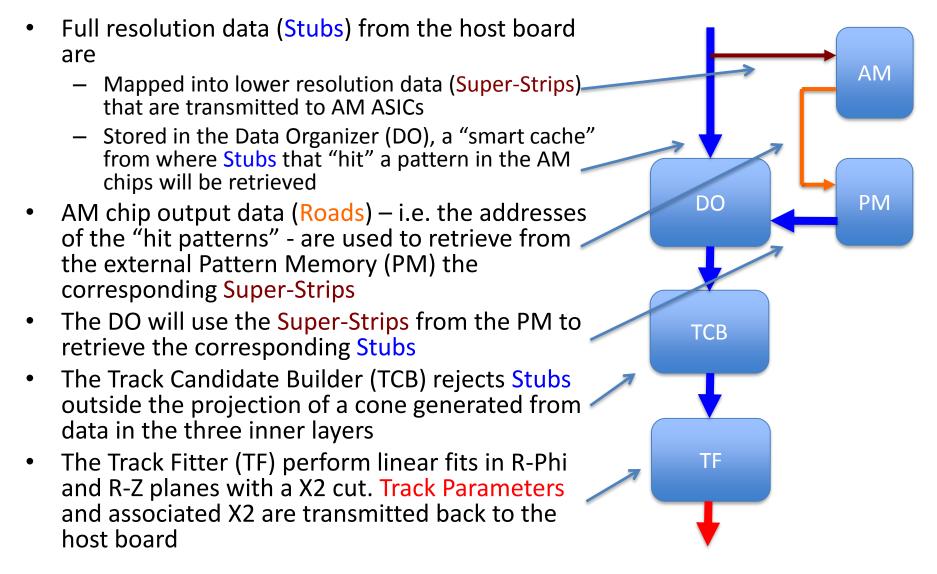
Pulsar IIb Firmware

- Application specific FW developed by us
- Ethernet Interface to/from the ATCA Backplane
- IP-Bus protocol between the Ethernet Interface (Embedded PHY/MAC) and the Instruction and Data Memories
- The Data Flow Manager runs the test program pre-loaded in the Instruction Memory and it manages the data transfers from Hit Memories to PRM and from PRM to Track Memories


Test Flow in the Pulsar IIb

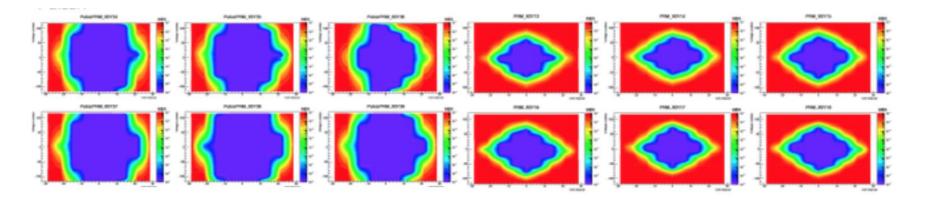
- 1. Load Configuration Data Memory (patterns)
- 2. Load Instruction Memory (configuration mode)
- 3. Configure AM ASICs and PM (i.e. load patterns)
- 4. Load Input Data Memory (Hits)
- 5. Load Instruction Memory (run mode)
 - a. Reset
 - b. Send N data
 - c. Send End_Of_Event
 - d. Wait

Very flexible and portable methodology: execution of a set of instructions that are mapped into control and data signals for all the FW components


- 6. Run test
- 7. Read Output Data Memory (Tracks)

PRM Firmware

- Parallel port (LVDS signals) for JTAG and W/R access to Control and Status Registers
- The Data Flow Manager manages the data transfers to/from AM ASICs and Pattern Memory and the modules performing data buffering and track reconstruction

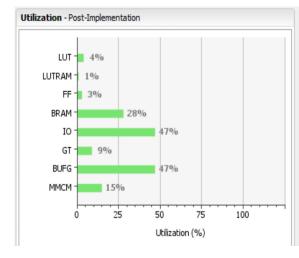

Data Flow in the PRM

High-Speed Link Test

- Pulsar ⇔ PRM
 - PRBS-7 Sequence
 - Up to 12.5 Gbps
 - BER < 2 x 10⁻¹⁵ (both directions)

- PRM ⇔ AM ASICs
 - PRBS-7 Sequence
 - 2.0 Gbps
 - BER < 8 x 10⁻¹⁵ (both directions)

Firmware Implementation


3.934 W

28.3 °C

0.8 °C/W

Low

56.7 °C (64.7 W)

Utilization - Post-Implementation					
1					
LUT -		56%			
LUTRAM -	21%				
FF -		46%			
BRAM -		53%			
DSP -	18%				
IO -			76%		
GT -				100%	
BUFG -	3%				
MMCM -	17%				
PLL -	8%				
ļ) 25	50 75	5 10		
Ū		Utilization (%			

Power				
Total On-Chip Power:	15.273 W			
Junction Temperature:	46.1 °C			
Thermal Margin:	38.9 °C (26.7 W)			
Effective dJA:	1.4 °C/W			
Power supplied to off-chip devices:	0.214 W			
Confidence level:	Low			
Implemented Power Report				

Power

Total On-Chip Power:

Thermal Margin:

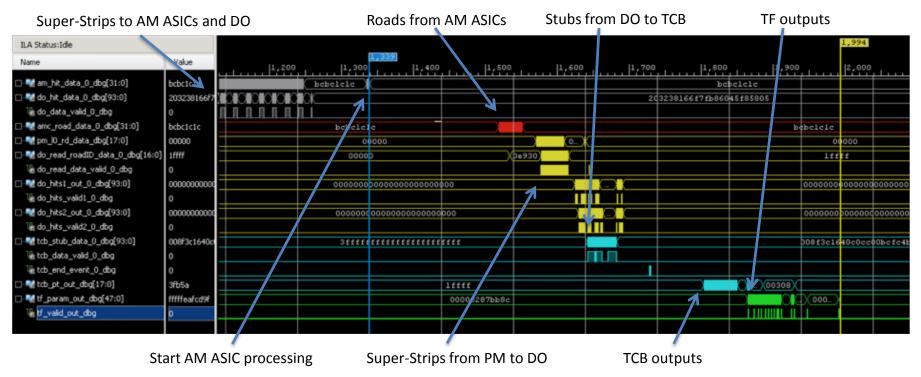
Confidence level:

Effective dJA:

Junction Temperature:

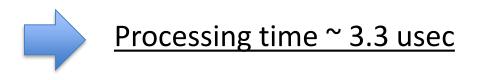
Implemented Power Report

Power supplied to off-chip devices: 0.083 W

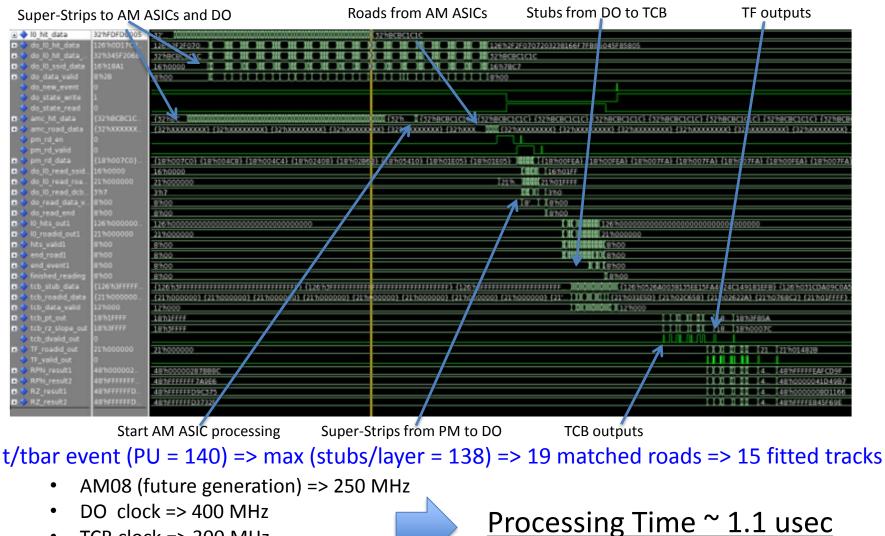

Pulsar IIb

- Xilinx Virtex-7
- Xc7vx690tffq1927-2
- Clock => 125 MHz
- GTH to ATCA Backplane (Ethernet)
 - Ref. Clock => 156.25 MHz
 - Rate => 1.0 Gbps
- GTH to PRM
 - Ref. Clock => 156.25 MHz
 - Rate => 2.5 Gbps

PRM06


- Xilinx Kintex UltraScale
- Xcku060-ffva1156-1-c
- GTH to from Pulsar IIb
 - Ref. Clock => 125.00 MHz
 - Rate => 2.5 Gbps
- GTH to from AM chips
 - Ref. Clock => 100.00 MHz
 - Rate => 2.0 Gbps

Hardware Test Results



t/tbar event (PU = 140) => max (stubs/layer = 138) => 19 matched roads => 15 fitted tracks

- AM06 clock = 100 MHz
- DO clock => 200 MHz
- TCB clock => 100 MHz
- TF clock => 200 MHz

Simulation Results

- TCB clock => 300 MHz
- TF clock => 500 MHz

Conclusions

- A real-time processor based on custom high-density Associative Memory ASICs and high-performance FPGAs has been proposed for the CMS L1-trigger
- A demonstrator based on the state-of-the-art components of the Track Trigger system (Pulsar IIb and PRM boards) has been developed
- The demonstrator has been used for the test of the custom components and for the validation of the track finding algorithms (proc. time => 3.3 usec)
- Simulations anticipate the possibility of further significant improvements (proc. time => 1.1 usec) => <u>We are working on this!</u>